Eng
Ukr
Rus
Print
2025 №01 (06) DOI of Article
10.37434/sem2025.01.07
2025 №01 (08)

Electrometallurgy Today 2025 #01
"Suchasna Elektrometallurgiya" (Electrometallurgy Today), 2025, #1, 40-44 pages

Study of the temperatures of phase transformation of heat-resistant titanium alloy of Ti–Al–Zr–Si–Mo–Nb–Sn alloying system

A.Yu. Severyn1, V.Yu. Bilous1, L.M. Radchenko1, V.A. Kostin1, I.I. Alekseenko1, L.T. Yeremeyeva1, M.M. Kuzmenko2

1E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: tim.severin72@gmail.com
2Frantsevych Institute for Materials Science Problems of the NAS of Ukraine. 3 Omelian Pritsak Str., 03142, Kyiv, Ukraine. E-mail: stsc.rapid@gmail.com

Abstract
Calculated CCD-diagram (continuous-cooling-transformation diagram) was derived for titanium alloy of Ti–Al–Zr– Si–Mo–Nb–Sn system to determine the phase transformation kinetics. The structures and microhardness of samples of heat-resistant titanium alloy of Ti–Al–Zr–Si–Mo–Nb–Sn system, quenched from different temperatures, were studied. It was proved that application of computational methods of modeling the structure-phase transformations for heat-resistant titanium alloys allows obtaining results close to the experimental values. 11 Ref., 1 Tabl., 5 Fig.
Keywords: heat-resistant titanium alloy, thermodynamic modeling, phase transformation, deformation processing, temperature, structure, phase, microhardness

Received: 20.01.2025
Received in revised form: 30.01.2025
Accepted: 21.02.2025

References

1. Hsueh-Chuan Hsu, Shih-Ching Wu, Shih-Kuang Hsu et al. (2014) Structure and mechanical properties of as-cast Ti-Si alloys. Intermetallics, 47(4), 11-16. https://doi.org/10.1016/j.intermet.2013.12.004
2. Shevchenko, O.M., Kulak, L.D., Kuzmenko, M.M. et al. (2023) The influence of the deformation and heat treatment on the structure and heat-resistance of Ti-Al-Zr-Si alloys. Mater. Sci., 59(1), 40-48. https://doi.org/10.1007/s11003-023-00741-y
3. Solonina, O.R., Glazunov, S.P. (1976) Heat-resistant titanium alloys. Moscow, Metallurgiya [in Russian].
4. Akhonin, S.V., Berezos, V.O., Pikulin, O.M. et al. (2022) Producing high-temperature titanium alloys of Ti-Al-Zr-Si-Mo-Nb-Sn system by electron beam melting. Suchasna Elektrometallurhiya, 2, 3-9 [in Ukrainian]. https://doi.org/10.37434/sem2022.02.01
5. Fan, Z., Tsakiropoulos, P., Miodownik, A.P. (1994) A generalized law of mixtures. J. of Mater. Sci., 29, 141-150. https://doi.org/10.1007/BF00356585
6. Lukas, H.L., Fries, S.G., Sundman, B. (2007) Computational thermodynamics: The CALPHAD method. U.K., Cambridge University Press. https://doi.org/10.1017/CBO9780511804137
7. Khina, B., Goranskiy, G.G. (2017) Thermodynamics of multicomponent amorphous alloys: Theories and experiment comparison. Adv. Materials and Technologies, 1, 036-043. https://doi.org/10.17277/amt.2017.01.pp.036-043
8. Dinsdale, A.T. (1991) SGTE data for pure elements. Calphad, 15(4), 317-425. https://doi.org/10.1016/0364-5916(91)90030-N
9. Akhonin, S.V., Belous, V.Yu., Selin, R.V., Kostin, V.A. (2021) Influence of TIG welding thermal cycle on temperature distribution and phase transformation in low-cost titanium alloy. In: Proc. of IOP Conf. Series: Earth and Environmental Sci., 688, 1-9. https://doi.org/10.1088/1755-1315/688/1/012012
10. Lyakisheva, N.P. (2000) State diagram of binary metallic systems: Refer. Book. Vol. 2, Book 2. Moscow, Mashinostroenie [in Russian].
11. Akhonin, S.V., Severyn, A.Yu., Berezos, V.O. et al. (2024) Influence of deformation processing modes on the structure and mechanical properties of a high-temperature titanium alloy of the Ti-Al-Zr-Si-Mo-Nb-Sn system. Metallophysics and Advanced Technologies, 46(7), 705-715. https://doi.org/10.15407/mfint.46.07.0705

Advertising in this issue: