"Suchasna Elektrometallurgiya" (Electrometallurgy Today), 2025, #2, 7-11 pages
Features of smelting of heat-resistant titanium alloy of the Ti‒Nb‒Al‒Mo‒Zr alloying system by electron beam melting with a cold hearth
S.V. Akhonin, V.O. Berezos, A.Yu. Severyn, O.H. Yerokhin, V.V. Pashynskyi
E.O. Paton Electric Welding Institute of the NAS of Ukraine
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine.
E-mail: titan.paton@gmail.com
Abstract
In order to develop the technique and technology of smelting ingots of heat-resistant alloys based on titanium
with the content of the Ti2AlNb ortho-phase, experimental works were carried out to produce the experimental
Ti‒39Nb‒16Al‒2.6Mo‒1.4Zr alloy. The results of studies of the produced ingot made by double electron
beam remelting are presented. The developed technology and experimental melting of the 110 mm diameter
Ti‒39Nb‒16Al‒2.6Mo‒1.4Zr ingot by the electron beam melting method with a cold hearth showed the prospects
of using the EBM method for producing ingots of heat-resistant alloys based on titanium containing the Ti2AlNb ortho-
phase. 12 Ref., 1 Tabl., 6 Fig.
Keywords: electron beam melting, cold hearth, ingot, refractory elements, chemical composition, titanium aluminide,
ortho-phase
Received: 07.04.2025
Received in revised form: 11.04.2025
Accepted: 07.05.2025
References
1. Kumpfert, J. (2001) Intermetallic alloys based on orthorhombic
titanium aluminide. Adv. Eng. Mater., 3, 851–864. DOI:
https://doi.org/10.1002/1527-2648(200111)3:113.0.CO;2-G
2. Partridge, A., Shelton, E.F.J. (2001) Processing and mechanical
property studies of orthorhombic titanium-aluminidebased alloys. Air Space Eur., 3, 170–173. DOI: https://doi.org/10.1016/S1290-0958(01)90085-1
3. Gogia, A.K. (2005) High-temperature titanium alloys. Defence
Sci. J., 55, 49–173. DOI: https://doi.org/10.14429/dsj.55.1979
4. Chen, Y., Niu, H., Kong, F., Xiao, S. (2011) Microstructure
and fracture toughness of a β phase containing TiAl alloy. Intermetallics,
19, 1405–1410. DOI: https://doi.org/10.1016/j.intermet.2011.05.006.
5. Emura, S., Araoka, A., Hagiwara, M. (2003) B2 grain size refinement
and its effect on room temperature tensile properties
of a Ti–22Al-27Nb orthorhombic intermetallic alloy. Scripta
Mater., 48, 629–634. DOI: https://doi.org/10.1016/s1359-6462(02)00462-1
6. Akhonin, S.V., Severin, A.Yu., Berezos, V.A. (2015) Development
of technology of adding the refractory alloying elements
into alloys on the base of Ti2AlNb intermetallic in electron
beam melting. Sovremennaya Elektrometallurgiya, 3, 12–15
[in Russian].
7. Vutova, K., Vassileva, V., Stefanova, V. et al. (2019). Effect of
electron beam method on processing of titanium technogenic
material. Metals, 9(6), 683. DOI: https://doi.org/10.3390/met9060683
8. Liu, Q.L., Li, X.M., Jiang, Y.H. (2016) Research progress of
electron beam cold hearth melting for titanium and titanium
alloys. Hot Work. Technol., 45, 9–14.
9. Akhonin, S.V., Severin, A.Yu., Berezos, V.A., Erokhin A.G.
(2013) Mathematical modelling of evaporation processes in
melting of ingots of multicomponent titanium alloys in electron
beam equipment with a cold hearth. Advances in Electrometallurgy,
4, 288–295.
10. Akhonin, S.V., Pikulin, A.N., Berezos, V.A. et al. (2019) Laboratory
electron beam unit UE-208M. Suchasna Elektrometalurhiya,
3, 15–22. DOI: https://doi.org/10.15407/sem2019.03.03
11. Wang, Y., Gao, L., Xin, Y. et al. (2024) Numerical modeling
of electron beam cold hearth melting for the cold hearth. Minerals,
14(6), 601. DOI: https://doi.org/10.3390/min14060601
12. Bellot, J.-P., Hess, E., Hitzer, D. (2000) Aluminum volatilization
and inclusion removal in the electron beam melting and
refining of titanium alloys. Metallurgical, Materials Transact.,
31B(8), 845–859.
Advertising in this issue: