Eng
Ukr
Rus
Print
2025 №02 (07) DOI of Article
10.37434/sem2025.02.01
2025 №02 (02)

Electrometallurgy Today 2025 #02
"Suchasna Elektrometallurgiya" (Electrometallurgy Today), 2025, #2, 7-11 pages

Features of smelting of heat-resistant titanium alloy of the Ti‒Nb‒Al‒Mo‒Zr alloying system by electron beam melting with a cold hearth

S.V. Akhonin, V.O. Berezos, A.Yu. Severyn, O.H. Yerokhin, V.V. Pashynskyi

E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: titan.paton@gmail.com

Abstract
In order to develop the technique and technology of smelting ingots of heat-resistant alloys based on titanium with the content of the Ti2AlNb ortho-phase, experimental works were carried out to produce the experimental Ti‒39Nb‒16Al‒2.6Mo‒1.4Zr alloy. The results of studies of the produced ingot made by double electron beam remelting are presented. The developed technology and experimental melting of the 110 mm diameter Ti‒39Nb‒16Al‒2.6Mo‒1.4Zr ingot by the electron beam melting method with a cold hearth showed the prospects of using the EBM method for producing ingots of heat-resistant alloys based on titanium containing the Ti2AlNb ortho- phase. 12 Ref., 1 Tabl., 6 Fig.
Keywords: electron beam melting, cold hearth, ingot, refractory elements, chemical composition, titanium aluminide, ortho-phase

Received: 07.04.2025
Received in revised form: 11.04.2025
Accepted: 07.05.2025

References

1. Kumpfert, J. (2001) Intermetallic alloys based on orthorhombic titanium aluminide. Adv. Eng. Mater., 3, 851–864. DOI: https://doi.org/10.1002/1527-2648(200111)3:113.0.CO;2-G
2. Partridge, A., Shelton, E.F.J. (2001) Processing and mechanical property studies of orthorhombic titanium-aluminidebased alloys. Air Space Eur., 3, 170–173. DOI: https://doi.org/10.1016/S1290-0958(01)90085-1
3. Gogia, A.K. (2005) High-temperature titanium alloys. Defence Sci. J., 55, 49–173. DOI: https://doi.org/10.14429/dsj.55.1979
4. Chen, Y., Niu, H., Kong, F., Xiao, S. (2011) Microstructure and fracture toughness of a β phase containing TiAl alloy. Intermetallics, 19, 1405–1410. DOI: https://doi.org/10.1016/j.intermet.2011.05.006.
5. Emura, S., Araoka, A., Hagiwara, M. (2003) B2 grain size refinement and its effect on room temperature tensile properties of a Ti–22Al-27Nb orthorhombic intermetallic alloy. Scripta Mater., 48, 629–634. DOI: https://doi.org/10.1016/s1359-6462(02)00462-1
6. Akhonin, S.V., Severin, A.Yu., Berezos, V.A. (2015) Development of technology of adding the refractory alloying elements into alloys on the base of Ti2AlNb intermetallic in electron beam melting. Sovremennaya Elektrometallurgiya, 3, 12–15 [in Russian].
7. Vutova, K., Vassileva, V., Stefanova, V. et al. (2019). Effect of electron beam method on processing of titanium technogenic material. Metals, 9(6), 683. DOI: https://doi.org/10.3390/met9060683
8. Liu, Q.L., Li, X.M., Jiang, Y.H. (2016) Research progress of electron beam cold hearth melting for titanium and titanium alloys. Hot Work. Technol., 45, 9–14.
9. Akhonin, S.V., Severin, A.Yu., Berezos, V.A., Erokhin A.G. (2013) Mathematical modelling of evaporation processes in melting of ingots of multicomponent titanium alloys in electron beam equipment with a cold hearth. Advances in Electrometallurgy, 4, 288–295.
10. Akhonin, S.V., Pikulin, A.N., Berezos, V.A. et al. (2019) Laboratory electron beam unit UE-208M. Suchasna Elektrometalurhiya, 3, 15–22. DOI: https://doi.org/10.15407/sem2019.03.03
11. Wang, Y., Gao, L., Xin, Y. et al. (2024) Numerical modeling of electron beam cold hearth melting for the cold hearth. Minerals, 14(6), 601. DOI: https://doi.org/10.3390/min14060601
12. Bellot, J.-P., Hess, E., Hitzer, D. (2000) Aluminum volatilization and inclusion removal in the electron beam melting and refining of titanium alloys. Metallurgical, Materials Transact., 31B(8), 845–859.

Advertising in this issue: