Print

2009 №11 (07) 2009 №11 (09)

The Paton Welding Journal 2009 #11
TPWJ, 2009, #11, 39-41 pages  
DETERMINATION OF THE PARAMETERS OF SHOCK-COMPRESSED GAS IN THE WELDING GAP AHEAD OF THE CONTACT POINT IN EXPLOSION CLADDING


Journal                    The Paton Welding Journal
Publisher                 International Association «Welding»
ISSN                       0957-798X (print)
Issue                       № 11, 2009 (November)
Pages                      39-41
 
 
Authors
S.Yu. BONDARENKO1, D.V. RIKHTER2, O.L. PERVUKHINA2 and L.B. Pervukhin2

1Altai State Agricultral University, Barnaul, RF
2Institute of Structural Macrokinetics and Materials Science, RAS, Chernogolovka, RF
 
 
Abstract
Dynamics of formation of shock-compressed gas region is considered, and dependence of the maximum length of the compressed-gas region on the contact point velocity and plate length has been derived. A hypothesis is offered that thermal ionization of gas to form thin layers of low-temperature plasma takes place at the interface in the welding gap ahead of the contact point in the supersonic flow (5-6 Mach) of the shock-compressed gas over the surfaces being welded.
 
 
Keywords: explosion cladding, gap between the plates, shock-compressed gas, gas parameters, thermal ionization of gas
 
 
Received:                ??
Published:               28.11.09
 
 
References
1.             Richter, U. (1973) Application of explosive-welded bimetals to constructing apparatuses for chemical industry. In: Proc. of 2nd Int. Conf. on Explosives (Marianske Lazne, CSSR, 1973), 253-261.
2.             Kudinov, V.M., Koroteev, A.Ya. (1978) Explosion welding in metallurgy. Moscow: Metallurgiya.
3.             Deribas, A.A., Zakharenko, I.D. (1975) On surface effects in glancing collisions of metal plates. Fizika Goreniya i Vzryva, 11(1), 151-153.
4.             Berdychenko, A.A., Zlobin, B.S., Pervukhin, L.B. et al. (2003) About possible inflammation of particles propelled into the gap in explosion welding of titanium. Ibid., 39(2), 128-136.
5.             Ishutkin, S.N., Kirko, V.I., Simonov, V.A. (1980) Investigation of heat effect of shock-compressed gas on colliding plate surface. Ibid., 16(6), 69-73.
6.             Ashaev, V.K., Doronin, G.S., Ermolovich, E.I. et al. (2006) Application of explosion welding and heat treatment methods for manufacturing of multilayer armored compositions having higher bullet-proof and survivability. In: Transact, on Armament, Automation, Control. Kovrov.
7.             Alekseev, Yu.L., Smirnova, G.M. (1994) Joint formation in explosion welding. Fizika i Khimiya Obrab. Metallov, 4/5, 126-130.
8.             Alekseev, Yu.L., Smirnova, G.M. (1994) About conditions of explosion welded joint formation. Ibid., 2, 112-116.
9.             Pervukhina, O.L., Berdychenko, A.A., Pervukhin, L.B. et al. (2006) Influence of atmosphere composition on formation of titanium-to-steel joint in explosion welding. In: Transact, on Higher Education Institutions on Explosion Welding and Properties of Welded Joints. Volgograd: VolgGTU, 59-64.
10.           Zeldovich, Ya.B., Rajzer, Yu.P. (1966) Physics of shock waves and high-temperature hydrodynamic phenomena. Moscow: Nauka.
11.           Frank-Kamenetsky, D.A. (1975) Plasma is the fourth state of matter. Moscow: Atomizdat.

Suggested Citation

S.Yu. BONDARENKO, D.V. RIKHTER, O.L. PERVUKHINA and L.B. Pervukhin (2009) DETERMINATION OF THE PARAMETERS OF SHOCK-COMPRESSED GAS IN THE WELDING GAP AHEAD OF THE CONTACT POINT IN EXPLOSION CLADDING. The Paton Welding J., 11, 39-41.