Print

2014 №06 (24) DOI of Article
10.15407/tpwj2014.06.25
2014 №06 (26)

The Paton Welding Journal 2014 #06
The Paton Welding Journal, 2014, #6-7, 115-123 pages  

INFLUENCE OF ACTIVE GAS CONTENT AND DISPERSE FILLER CONTINUITY ON THE PROCESS OF BEAD FORMATION IN MICROPLASMA POWDER SURFACING OF NICKEL SUPERALLOYS

K.A. YUSHCHENKO and A.V. YAROVITSYN


E.O. Paton Electric Welding Institute, NASU. 11 Bozhenko Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua
 
 
Abstract
Features of deposited metal formation in microplasma powder surfacing of nickel superalloys, depending on presence of active gases in the filler powder, are considered. Conditions of sound formation of deposited metal and requirements to filler powders were established, proceeding from oxygen and nitrogen content. An interrelation between presence of micropores in deposited metal and their presence inside disperse powder particles is shown. A probable mechanism of microporosity formation, influence of technological parameters of the process on micropore quantity and size in deposited metal is described. 25 Ref., 2 Tables, 10 Figures.
 
 
Keywords: microplasma powder surfacing, nickel superalloys, deposited metal, filler powder, oxygen and nitrogen, microporosity of powder and deposited metal
 
 
Received:                30.04.14
Published:               28.09.14
 
References
1. (1974) Technology of electric fusion welding of metals and alloys. Ed. by B.E. Paton. Moscow: Mashinostroenie.
2. Sims, C., Stolloff, N., Hagel, W. (1995) Superalloys II: Heat-resistant materials for aerospace and industrial power plants. Ed. by R.E. Shalin. Moscow: Metallurgiya.
3. Zinke, M., Neubert, G., Herold, H. (1999) Properties of welded joints of heat-resistant nickel-base alloys. Avtomatich. Svarka, 4, 35-38.
4. Sorokin, L.I. (2004) Welding-up of cracks with oxidized surface on heat-resistant nickel alloys. Svarochn. Proizvodstvo, 12, 30-31.
5. Sorokin, L.I., Lukin, V.I., Bagdasarov, Yu.S. (1997) Weldability of cast heat-resistant alloys of JS6 type. Ibid., 6, 12-17.
6. Sorokin, L.I. (1999) Strains and cracks in welding and heat treatment of heat-resistant nickel alloys. Ibid., 12, 11-17.
7. Yushchenko, K.A., Savchenko, V.S., Yarovitsyn, A.V. et al. (2010) Development of the technology for repair by microplasma powder cladding of flange platform faces of aircraft engine D18T high-pressure turbine blades. The Paton Welding J., 8, 21-24.
8. (2010) Deloro Stellite technological seminar in Zaporozhie. Ibid., 1, 59-62.
9. Yushchenko, K.A., Yarovitsyn, A.V., Zvyagintseva, A.V. (2008) Properties of microplasma powder welded joints on heat-resistant nickel alloys. Ibid., 9, 2-5.
10. Ternovoj, Yu.F., Kudievsky, S.S., Pashetneva, N.N. (2005) Engineering calculations of melted metal spraying processes. Zaporozhie: Zaporozh. GIA.
11. Ternovoj, Yu.F., Baglyuk, S.A., Kudievsky, S.S. (2008) Theoretical principles of metallic melt spraying. Zaporozhie: Zaporozh. GIA.
12. Fedorenko, G.A., Shvedikov, V.M., Grishchenko, L.V. (1986) About reliability of methods for examination of jet shielding. Svarochn. Proizvodstvo, 6, 35-37.
13. GOST 17745-90: Steels and alloys. Methods for determination of gases. Introd. 01.07.1991.
14. Yushchenko, K.A., Yarovitsyn, A.V., Yakovchuk, D.B. et al. (2013) Some techniques for reducing filler powder losses in microplasma cladding. The Paton Welding J., 9, 30-36.
15. Bulanov, V.Ya., Kvater, L.I., Dolgal, T.V. et al. (1983) Diagnostics of metallic powders. Moscow: Nauka.
16. Gladky, P.V., Pereplyotchikov, E.F., Ryabtsev, I.A. (2007) Plasma surfacing. Kiev: Ekotekhnologiya.
17. Kablov, E.N. (2001) Cast blades of gas turbine engines (alloys, technology, coatings). Moscow: MISIS.
18. Stroganov, G.B., Chepkin, V.M. (2000) Cast heat-resistant alloys for gas turbines. Moscow: ONTI MATI.
19. Kablov, D.E., Sidorov, V.V. (2012) Nitrogen in monocrystalline heat-resistant alloys. Nauka i Obrazovanie, 2, 77-30569/339556 (electron. ed.).
20. Lysenko, N.A., Pedash, A.A., Kolomojtsev, A.G. et al. (2005) Improvement of structure and properties of nickel heat-resistant alloy ZMI3U-VI. Visnyk Zaporizh. DTU, 2, 34-39.
21. Yarovitsyn, A.V.,Yushchenko, K.A., Nakonechny, A.A. et al. (2009) Peculiarities of low-amperage argon-arc and microplasma powder cladding on narrow substrate. The Paton Welding J., 6, 31-35.
22. Ivochkin, I.I., Malyshev, B.D. (1981) Submerged-arc welding with additional filler metal. Moscow: Strojizdat.
23. Lykov, A.V. (1967) Theory of heat conductivity. Moscow: Vysshaya Shkola.
24. Katayama, S. (2001) Mechanism of formation of different defects in laser welding and methods of their prevention. J. JWS, 19(1), 213-218.
25. Sharova, N.A., Tikhomirova, E.A., Barabash, A.L. et al. (2009) To problem of choice of new heat-resistant nickel alloys for prospective aircraft gas-turbine engines. Vestnik Samara GAU, 3, 249-255.

Suggested Citation

K.A. YUSHCHENKO and A.V. YAROVITSYN (2014) INFLUENCE OF ACTIVE GAS CONTENT AND DISPERSE FILLER CONTINUITY ON THE PROCESS OF BEAD FORMATION IN MICROPLASMA POWDER SURFACING OF NICKEL SUPERALLOYS. The Paton Welding J., 06, 115-123.