Eng
Ukr
Rus
Print
2014 №06 (33) DOI of Article
10.15407/tpwj2014.06.34
2014 №06 (35)

The Paton Welding Journal 2014 #06
TPWJ, 2014, #6-7, 155-158 pages  
TOWARDS THE PROBLEM OF DISPERSITY AND MORPHOLOGY OF PARTICLES IN WELDING AEROSOLS
 
Journal                    The Paton Welding Journal
Publisher                 International Association «Welding»
ISSN                       0957-798X (print)
Issue                       № 6-7, 2014 (June-July)
Pages                      155-158
 
 
Authors
I.P. GUBENYA1, I.R. YAVDOSHCHIN1, S.N. STEPANYUK1 and A.V. DEMETSKAYA2
1E.O. Paton Electric Welding Institute, NASU. 11 Bozhenko Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua
2Institute of Occupational Health, AMSU. 75 Saksagansky Str., 03680, Kiev, Ukraine. E-mail: torovchik@mail.ru
 
 
Abstract
The hard component of welding aerosol is one of the main hazards, which are encountered by those working with welding and related technologies. The investigations on this subject have been carried out for more than half a century. The size and dispersity of the particles are of particular interest among the properties and peculiarities of structure of hard component of welding aerosol, as these parameters define the ways of penetrating into a living organism. The present study examines dispersity of particles of hard component of welding aerosol by means of several types of equipment, involving different analysis principles. It was shown that the technique of preparation of a sample for analysis and peculiarities of equipment greatly influence the results. The morphology of particles was also examined. 20 Ref., 5 Figures.
 
Keywords: welding aerosol, hard component, dispersity, morphology, nanoparticle, agglomerate, laser granulometry, diffusion spectrometer
 
 
Received:                24.04.14
Published:               28.09.14
 
References
1. Pokhodnya, I.K., Gorpenyuk, V.N., Milichenko, S.S. et al. (1990) Metallurgy of arc welding. Processes in arc and melting of electrodes. Ed. by I.K. Pokhodnya. Kiev: Naukova Dumka.
2. (2001) Aerosol measurement: Principles, techniques and applications. 2nd ed. Wiley-Interscience Publ.
3. Sowards, J.W., Lippold, J.C., Dickinson, D.W. et al. (2008) Characterization procedure for the analysis of arc welding fume. Welding J., 87, 76-83.
4. Sowards, J.W., Lippold, J.C., Dickinson, D.W. et al. (2008) Characterization of welding fume from SMAW electrodes. Pt 1. Ibid., 87, 106-112.
5. Sowards, J.W., Lippold, J.C., Dickinson, D.W. et al. (2010) Characterization of welding fume from SMAW electrodes. Pt 2. Ibid., 89, 82-89.
6. Hewett, P. (1995) The particle size distribution, density and specific area of welding fumes from SMAW and GMAW mild and stainless steel consumables. Amer.Ind. Hygiene Assoc. J., 56, 128-135. https://doi.org/10.1080/15428119591017150
7. Sterjovski, Z., Norrish, J., Monaghan, B.J. The effect of voltage and metal-transfer mode on particulate-fume size during the GMAW of plain-carbon steel. IIW Doc. VIII-2092-08.
8. Hoet, P.H.M., Brueske-Hohlfeld, I., Salata, O.V. (2004) Nanoparticles known and unknown health risks. J. Nanobiotechnol., 12(2).
9. Raloff, J. (2010) Destination brain. Sci. News, 177(11), 16-20. https://doi.org/10.1002/scin.5591771120
10. Glushkova, A.V., Radilov, A.S., Rembovsky, V.R. (2007) Nanotechnologies and nanotoxicology: Opinion on the problem. Toksikolog. Vestnik, 6, 4-8.
11. Elder, A., Gelein, R., Silva, V. (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect., 114(8), 1172-1178. https://doi.org/10.1289/ehp.9030
12. Simko, M., Fiedeler, U., Gazso, A. et al. (2010) Can nanoparticles end up in the brain. NanoTrust-Dossier, 14.
13. Voitkevich, V. (1995) Welding fumes: Formation, properties and biological effects. Cambridge: Abington Publ.
14. Terjovski, J., Drossier, J., de Thoisy, E. et al. (2006) An investigation of particulate weld fume generated from GMAW of plain carbon steel. Austral. Welding J., 51(1st quart.), 21-40.
15. Worobiec, A., Stefaniak, E.A., Kiro, S. et al. (2007) Comprehensive microanalytical study of welding aerosols with X-ray and Raman based methods. X-Ray Spectrometry, 36, 328-335. https://doi.org/10.1002/xrs.979
16. Berlinger, B., Benker, N. et al. (2011) Physicochemical characterization of different welding aerosols. Analyt. Bioanalyt. Chemistry, 10, 1773-1780. https://doi.org/10.1007/s00216-010-4185-7
17. Zimmer, A.E., Biswas, P. (2001) Characterization of the aerosols resulting from arc welding processes. Aerosol Sci., 32, 993-1008. https://doi.org/10.1016/S0021-8502(01)00035-0
18. Kippax, P. (2005) Measuring particle size using modern laser diffraction techniques. Paint & Coatings Industry, 21, Issue 8, 42.
19. Carpenter, K.R., Monaghan, B.J., Norrish, J. (2009) Analysis of fume formation rate and fume particle composition for gas metal arc welding (GMAW) of plain carbon steel using different shielding gas compositions. ISIJ Int., 49(3), 416-420. https://doi.org/10.2355/isijinternational.49.416
20. Jenkins, N.T., Eager, T.W. (2005) Chemical analysis of welding fume particle. Welding J., 6, 87-93.
>