Print

2014 №10 (10) DOI of Article
10.15407/tpwj2014.10.01
2014 №10 (02)

The Paton Welding Journal 2014 #10
The Paton Welding Journal, 2014, #10, 2-10 pages  

METHODS OF MATHEMATICAL MODELLING OF THE PROCESSES OF ELECTRODE METAL DROP FORMATION AND TRANSFER IN CONSUMABLE ELECTRODE WELDING (Review)

A.P. SEMYONOV

E.O. Paton Electric Welding Institute, NASU. 11 Bozhenko Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua
 
 
Abstract
Processes of welding wire heating and melting, electrode metal drop formation and transfer in consumable electrode welding largely determine welding efficiency and quality. In its turn, the nature of metal melting and transfer with this welding process is determined by a large number of such physical phenomena as heat and mass transfer, gas(hydro)dynamics, electromagnetic processes, running in arc plasma, on the surface and in the volume of molten electrode metal-drop. This paper gives a review of currently available methods of theoretical investigation and mathematical modelling of the above processes, allowing prediction of such characteristics of electrode metal transfer as drop volume and shape, their thermal and gas-dynamic state, detachment frequency, etc. Advantages and disadvantages of the considered models are analyzed and main directions of their further development are outlined. 37 Ref., 11 Figures.
 
 
Keywords: consumable electrode welding, mathematical modelling, electrode metal drop formation
 
 
Received:                04.06.14
Published:               28.10.14
 
 
References
1. Amson, J.C., Salter, G.R. (1962) An analysis of the gas-shielded consumable metal arc welding system. Brit. Welding J., 41(4), 232-249.
2. Greene, W.J. (1960) An analysis of transfer in gas-shielded welding arcs. Pt 2. AIEE, 79(3), 194-203. https://doi.org/10.1109/tai.1960.6371666
3. Waszink, J.H., Graat, L.H. (1983) Experimental investigation of the forces acting on a drop of weld metal. Welding J., 62(4), 109-116.
4. Allum, C.J. (1985) Metal transfer in arc welding as a varicose instability. Pt 1: Varicose instabilities in a current-carrying liquid cylinder with surface charge. J. Phys. D: Appl. Phys., 18(7), 1431-1446. https://doi.org/10.1088/0022-3727/18/7/029
5. Allum, C.J. (1985) Metal transfer in arc welding as a varicose instability. Pt 2: Development of model for arc welding. Ibid., 18(7), 1447-1468.
6. Park, A.Y., Kim, S.R., Hammad, M.A. (2009) Modification of pinch instability theory for analysis of spray mode in GMAW. Ibid., 42(22), 225-503. https://doi.org/10.1088/0022-3727/42/22/225503
7. Choi, J.H., Lee, J., Yoo, C.D. (2001) Dynamic force balance model for metal transfer analysis in arc welding. Ibid., 34(17), 2658-2664. https://doi.org/10.1088/0022-3727/34/17/313
8. Jones, L.A., Eagar, T.W., Lang, J.H. (1998) A dynamic model of drops detaching from a gas metal arc welding electrode. Ibid., 31(1), 107-123. https://doi.org/10.1088/0022-3727/31/1/014
9. Voropaj, N.M., Kolesnichenko, A.F. (1979) Modeling of drop shape of electrode metal in gas-shielded welding. Avtomatich. Svarka, 9, 27-32.
10. Nemchinsky, V.A. (1994) Size and shape of the liquid droplet at the molten tip of an arc electrode. J. Phys. D: Appl. Phys., 27(7), 1433-1442. https://doi.org/10.1088/0022-3727/27/7/014
11. Semyonov, A., Demchenko, V., Krivtsun, I. et al. (2010) Modelling of process of electrode metal droplet formation. In: Proc. of 5th Int. Conf. on Mathematical Modelling and Information Technologies in Welding and Related Processes (25-28 May 2010, Katsiveli, Crimea, Ukraine), 183-192. Kiev: PWI.
12. Semenov, O., Demchenko, V., Krivtsun, I. et al. (2012) A dynamic model of droplet formation in GMA welding. Modelling and Simulation in Materials Sci. and Eng., 20(4), 045003. https://doi.org/10.1088/0965-0393/20/4/045003
13. Krivtsun, I.V., Semenov, O.P., Demchenko, V.F. (2011) To theory of electrode metal droplet formation in GMA welding. Dopovidi NANU, 6, 90-96.
14. Semenov, O., Demchenko, V., Krivtsun, I. et al. (2012) Modelling of the droplet formation process in GMA welding. In: Proc. of 10th Int. Sem. on Numerical Analysis of Weldability (Austria, Seggau, 2012), 83-94.
15. Haidar, J., Lowke, J.J. (1996) Predictions of metal droplet formation in arc welding. J. Phys. D: Appl. Phys., 29(12), 2951-2960. https://doi.org/10.1088/0022-3727/29/12/003
16. Choi, S.K., Yoo, C.D., Kim, Y.S. (1998) Dynamic simulation of metal transfer in GMAW. Pt1: Globular and spray transfer modes. Welding J., 77(1), 38-44.
17. Choi, S.K., Yoo, C.D., Kim, Y.S. (1998) Dynamic simulation of metal transfer in GMAW. Pt. 2: Short-circuit transfer mode. Ibid., 77(1), 45-51.
18. Fan, H.G., Kovacevic, R.A. (2004) A unified model of transport phenomena in gas metal arc welding including electrode, arc plasma and molten pool. Ibid., 37, 2531-2544. https://doi.org/10.1088/0022-3727/37/18/009
19. Wang, F., Hou, W.K., Hu, S.J. (2003) Modelling and analysis of metal transfer in gas metal arc welding. Ibid., 36, 1143-1152. https://doi.org/10.1088/0022-3727/36/9/313
20. Hu, J., Tsai, H.L. (2007) Heat and mass transfer in gas metal arc welding. Pt1: The metal. Int. J. Heat and Mass Transfer, 50, 808-820. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.026
21. Amson, J.C. (1965) Lorentz force in the molten tip of an arc electrode. Brit. J. Appl. Phys., 16(8), 1169-1179. https://doi.org/10.1088/0508-3443/16/8/316
22. Kim, Y.S., Eagar, T.W. (1993) Analysis of metal transfer in gas metal arc welding. Welding J., 72, 269-278.
23. Finn, R. (1989) Equilibrium capillary surfaces: Mathematical theory. Moscow: Mir.
24. Hartland, S., Hartley, R.W. (1976) Axisymmetric fluid-liquid interfaces: Tables giving the shape of sessile and pendant drops and external menisci, with examples of their use. Amsterdam: Elsevier Sci. Publ.
25. Rhee, S., Kannatey-Asibu, E. (1992) Observation of metal transfer during gas metal arc welding. Welding J., 71, 381-386.
26. Eggers, J., Dupont, T.F. (1994) Drop formation in a one-dimensional approximation of the Navier-Stokes equation. J. Fluid Mech., 262, 205-221. https://doi.org/10.1017/S0022112094000480
27. Nemchinsky, V.A. (1997) Heat transfer in a liquid droplet hanging at the tip of an electrode during arc welding. J. Phys. D: Appl. Phys., 30(7), 1120-1124. https://doi.org/10.1088/0022-3727/30/7/009
28. Wang, J.B., Nishimura, H., Katayama, S. et al. (2011) Evaporation phenomena of magnesium from droplet at welding wire tip in pulsed MIG arc welding of aluminium alloys. Sci. and Technol. of Welding and Joining, 16(5), 418-425. https://doi.org/10.1179/1362171810Y.0000000030
29. Kou, S., Sun, D.K. (1985) Fluid flow and weld penetration in stationary arc welds. Metall. Transact. A, 16, 203-13. https://doi.org/10.1007/BF02816047
30. Hirt, C.W., Nichols, B.D. (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Phys., 39(1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
31. Brackbill, J.U., Kothe, D.B., Zemach, C.A. (1992) A continuum method for modeling surface tension. Ibid., 100(2), 335-354. https://doi.org/10.1016/0021-9991(92)90240-y
32. Nichols, B.D., Hirt, C.W., Hotchkiss, R.S. (1980) SOLA-VOF. A solution algorithm for transient fluid flow with multiple free boundaries. NASA STI/Recon Techn. Report, 81, 14281.
33. Wilkes, E.D., Philips, S.D., Basaran, O.A. (1999) Computational and experimental analysis of dynamics of drop formation. Phys. of Fluids, 11(12), 3577-3598. https://doi.org/10.1063/1.870224
34. Degroote, J., Bruggeman, P., Vierendeels, J. (2009) A coupling algorithm for partitioned solvers applied to bubble and droplet dynamics. Computers & Fluids, 38(3), 613-624. https://doi.org/10.1016/j.compfluid.2008.06.004
35. Nemchinsky, V.A. (2011) A droplet in the inter-electrode gap during gas metal arc welding. J. Phys. D: Appl. Phys., 44, 445203. https://doi.org/10.1088/0022-3727/44/44/445203
36. Kozakov, R., Gott, G., Schopp, H. et al. (2013) Spatial structure of the arc in a pulsed GMAW process. Ibid., 46, 224001. https://doi.org/10.1088/0022-3727/46/22/224001
37. Schnick, M., Hertel, M., Fuessel, U. et al. (2013) Energy balance in MIG arcs. Ibid., 46, 224002. https://doi.org/10.1088/0022-3727/46/22/224002