2016 №04 (05) DOI of Article
2016 №04 (07)

The Paton Welding Journal 2016 #04
The Paton Welding Journal, 2016, #4, 48-52 pages

State-of-the-art inverter power sources with increased power factor

V.V. Burlaka, S.V. Gulakov and S.K. Podnebennaya

Priazovsky State Technical University 7 Universitetskaya Str., 87500, Mariupol, Ukraine.
The paper proposes circuit design of high-frequency transformer-isolated converter and three-phase input without intermediate rectification of input voltage. A system was built using modular approach, i.e. each phase contains identical high-frequency AC/DC transformer-isolated converters, the outputs of these converters have series connection. Application of principle of direct conversion allows reducing amount of elements in the source power circuit, thus, reducing energy loss. Besides, high-frequency energy transformation allows significant improvement of weight-dimension characteristics of the system. Application of special algorithm of power key control provides for the possibility of active correction of input power factor and neutralization of circuit frequency harmonics in source output voltage that significantly reduces the requirements to output filter. The developed source has fast response and can be used for welding processes requiring high rates of change of arc current. 14 Ref., 3 Tables, 4 Figures.
Keywords: power source, welding inverter, power factor corrector, direct converter, direct conversion, power quality, galvanic isolation
Received: 20.05.2015
Published: 02.06.2016
1. Bin Wu (2006) High power converters and AC drives. New Jersey: IEEE Press, Wiley-Intersci.
2. Kolar, J.W., Friedli, T. (2011) The essence of three-phase PFC rectifier system. In: Proc. of 33rd IEEE Int. Telecommunications Energy Conference (9–13 Oct. 2011).
3. Lee, J.H., Kim, J.H., Kim, S.S. et al. (2001) Harmonic reduction of CO2 welding machine using single-switch, three-phase boost converter with six order harmonic injection PWM. In: IEEE ISIE Proc., Vol. 3, 1526–1529.
4. Salo, M., Tuusa, H., Hyqvist, J. (2001) A high performance three-phase DC voltage source — An application to a welding machine. In: IEEE APEC Proc., Vol. 2, 793–799.
5. Huang, N., Zhang, D., Song, T. et al. (2005) A 10 kW single- stage converter for welding with inherent power factor correction. In: IEEE APEC Proc., Vol. 1, 254–259.
6. Schenk, K., Cuk, S. (1997) A simple three-phase power factor corrector with improved harmonic distortion. PESC, 399–405.
7. Huang, Q., Lee, F. (1996) Harmonic reduction in a single- switch, three-phase boost rectifier with high order harmonic injected PWM. Ibid., 790–797.
8. Rudyk, S.D., Turchaninov, V.E., Florentsev, S.N. (1998) Perspective welding current sources. Elektrotekhnika, 7, 8–13.
9. Sekino Yoshihiro. Three-phase rectifier. Pat. 7-46846 A Japan. Int. Cl. H02M 7/25, 3/155, 7/08. Fil. 30.07.93. Publ. 14.02.95.
10. Burlaka, V.V., Gulakov, S.V. Power source with three-phase input. Pat. 63702 Ukraine for useful model. Int. Cl. H02H 7/09. Fil. 18.12.2009. Publ. 25.10.2011.
11. Burlaka, V.V., Gulakov, S.V. (2013) Multiphase power source. Pat. 102042 Ukraine for invention. Int. Cl. H02M 7/155. Fil. 14.05.2012. Publ. 27.05.2013.
12. Biela, J., Drofenik, U., Krenn, F. et al. (2007) Novel threephase Y-rectifier cyclic 2 out of 3 DC output voltage balancing. In: Proc. of 29th Int. Telecommunications Energy Conf., 677–685.
13. Biela, J., Drofenik, U., Krenn, F. et al. (2009) Three-phase Y-rectifier cyclic 2 out of 3 DC output voltage balancing control method. In: IEEE Transact. on Power Electronics, Vol. 24, Issue 1, 34–44.
14. Kondratiev, D.E. (2008) Three-phase rectifiers with active power factor correction and bidirectional power transfer: Syn. of Thesis for Cand. of Techn. Sci. Degree. Moscow.