Eng
Ukr
Rus
Print
2016 №11 (07) DOI of Article
10.15407/tpwj2016.11.01
2016 №11 (02)

The Paton Welding Journal 2016 #11
TPWJ, 2016, #11, 2-8 pages
 
Numerical analysis of plasma characteristics of constricted and free-burning arc with a refractory cathode


Journal                    The Paton Welding Journal
Publisher                 International Association «Welding»
ISSN                      0957-798X (print)
Issue                       #11, 2016 (November)
Pages                      2-8
 
 
Authors
I.V. Krivtsun1, I.V. Krikent2 and V.F. Demchenko1
1E.O. Paton Electric Welding Institute, NASU 11 Kazimir Malevich Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua
2Dnieprodzerzhinsk State Technical University 2 Dnieprostrojevskaya Str., 51918, Dnieprodzerzhinsk, Ukraine
 
 
Abstract
Self-consistent mathematical model of the processes of energy-, mass- and electric transfer in the column and anode region of the electric arc with refractory cathode was used as a basis to perform numerical analysis of thermal, electromagnetic and gas-dynamic characteristics of arc plasma for constricted (plasma) and free-burning argon arc with copper water-cooled anode. Results of calculation of characteristics of arc column plasma show that distributions of electric current density, temperature and velocity of constricted arc plasma can greatly differ from the respective distributions for free-burning arc, depending on arc current, plasmatron nozzle channel diameter and plasma gas flow rate. Characteristics of near-anode layer of plasma arc also differ significantly from the respective characteristics of free-burning arc, depending on the above arcing mode parameters. Thus, by varying arc current, plasmatron nozzle channel diameter and plasma gas flow rate, it is possible to effectively control the characteristics of thermal, electromagnetic and, particularly, dynamic impact of the constricted arc on anode metal surface. 13 Ref., 1 Table, 10 Figures.
 
Keywords: constricted (plasma) arc, free-burning arc, refractory cathode, water-cooled anode, arc column, anode region, arc plasma characteristics, mathematical modeling
 
 
Received:                04.10.16
Published:               14.12.16
 
 
References
  1. Engelsht, V.S., Gurovich, V.Ts., Desyatkov, G.A. et al. (1990) Low-temperature plasma. Novosibirsk: Nauka. Vol. 1: Theory of electric arc column.
  2. Beulens, J.J., Milojevic, D., Schram, D.C. et al. (1991) A two-dimensional nonequilibrium model of cascaded arc plasma flows. Fluids B, 3(9), 2548–2557. https://doi.org/10.1063/1.859967
  3. Dowden, J., Kapadia, P. (1994) Plasma arc welding: a mathematical model of the arc. of Physics D: Applied Physics, 27(5), 902–910. https://doi.org/10.1088/0022-3727/27/5/004
  4. Wendelstorf, J., Decker, I., Wohlfahrt, H. et al. (1996) TIG and plasma arc modeling: a survey. Mathematical modelling of weld phenomena 3. London: The Institute of Materials, 848–897.
  5. Jenista, J., Heberlein, V.R., Pfender, E. (1997) Numerical model of the anode region of high current electric arcs. IEEE Transact. on Plasma Sci., 25(5), 883–890. https://doi.org/10.1109/27.649585
  6. Schnick, M., Fuessel, U., Spille-Kohoff, A. (2010) Numerical investigations of the influence of design parameters, gas composition and electric current in plasma arc welding (PAW). Welding in the World, 54(Issue 3), 87–96. https://doi.org/10.1007/BF03263492
  7. Krivtsun, I.V., Demchenko, V.F., Krikent, I.V. (2010) Model of the processes of heat-, mass- and charge transfer in the anode region and column of the welding arc with refractory cathode. The Paton Welding J., 6, 2–9.
  8. Krikent, I.V., Krivtsun, I.V., Demchenko, V.F. (2012) Modelling of processes of heat-, mass- and electric transfer in column and anode region of arc with refractory cathode. Ibid., 3, 2–6.
  9. Wendelstorf, J., Simon, G., Decker, I. et al. (1997) Investigation of cathode spot behavior of atmospheric argon arcs by mathematical modeling. In: of the 12th Int. Conf. on Gas Discharges and their Applications (Germany, Greifswald, 1997). Vol. 1, 62–65.
  10. Boulos, M.I., Fauchais, P., Pfender, E. (1997) Thermal plasmas: Fundamentals and applications. New York and London: Plenum Press, Vol. 1.
  11. Lyashko, I.I., Demchenko, V.F., Vakulenko, S.A. (1981) Version of method of splitting of equations of viscous incompressible fluid dynamics on Lagrange–Euler lattices. Doklady AN Ukr.SSR. Seriya A, 7, 43–47.
  12. Demchenko, V.F., Lesnoj, A.B. (2000) Lagrange-Euler method of numerical solution of multidimensional problem of convective diffusion. Dopovidi NANU, 11, 71–75.
  13. Krivtsun, I.V., Krikent, I.V. Demchenko, V.F. et al. (2015) Interaction of CO2-laser radiation beam with electric arc plasma in hybrid (laser + TIG) welding. The Paton Welding J., 3/4, 6–15. https://doi.org/10.15407/tpwj2015.04.01
 
 

>