TPWJ, 2017, #8, 18-23 pages
Increase of brittle fracture resistance of metal of heat-affected zone in railway wheel surfacing
Journal The Paton Welding Journal
Publisher International Association «Welding»
ISSN 0957-798X (print)
Issue #4, 2017 (August)
Pages 18-23
Authors
O.A. Haivoronskyi, V.D. Poznyakov, L.I. Markashova, A.S. Shishkevich, V.A. Yashchuk and A.V. Klapatyuk
E.O. Paton Electric Welding Institute, NASU
11 Kazimir Malevich Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua
Abstract
Presented results are continuation of the complex investigations and refer to effect of low-temperature tempering, which is carried out in process of delayed cooling of products after welding, on mechanical properties and crack resistance of the joints of high-strength steel with 0.55–0.65 % carbon content. It is determined that tempering at 100 °C during four hours promotes rise of ductility property indices of quenched metal of heat-affected zone by 70 %, that of impact toughness 3 times, crack resistance 4.5 times, welded joint life duration 2 times. It is related with 1.5 times decrease of dislocation density in a volume of bainite and martensite laths as well as relaxation of stresses of II type. 14 Ref., 2 Tables, 7 Figures.
Keywords: high-strength carbon steel, arc welding, heat-affected zone, low-temperature tempering, mechanical properties, brittle fracture, life
Received: 12.04.17
Published: 01.08.17
References
- (1972) New methods for assessment of resistance of metals to brittle fracture. Ed. by Yu.N. Robotnova. Moscow: Mir.
- Makarov, E.L. (1981) Cold cracks in welding of alloy steels. Moscow: Mashinostroenie.
- Kasatkin, O.G., Mikhoduj, L.I., Kasatkin, S.B. et al. (1995) Resistance to delayed and brittle fracture of HAZ metal of 14Kh2GMR type high-strength steels. Svarka, 2, 7–10.
- Skulsky, V.Yu. (2009) Peculiarities of kinetics of delayed fracture of welded joints of hardening steels. The Paton Welding J., 7, 12–17.
- Efimenko, M.G., Radzivilova, N.O. (2003) Physical metallurgy and heat treatment of welded joints. Kharkiv: NTU KhPI. Anokhov, A.E., Korolkov, P.M. (2006) Welding and heat treatment in power engineering. Kyiv: Ekotekhnologiya. Babachenko, A.I., Litvinenko, P.L., Knysh, A.V. et al. (2011) Improvement of chemical composition of steel for railway wheels providing of their resistance invrease to defect formation on roll surface. In: Fundamental and applied problems of ferrous metallurgy: Transact., Dnepropetrovsk, 226–233.
- Gajvoronsky, A.A., Poznyakov, V.D., Markashova, L.I. et al. (2016) Brittle fracture resistance of HAZ metal in arc-welded joints of high-strength steels with carbon content of 0.55–0.65 %. The Paton Welding J., 9, 2–8. https://doi.org/10.15407/tpwj2016.09.01
- Matveev, V.V. (2007) Restoration of railway wheels using surfacing. Kiev: PWI.
- Gajvoronsky, O.A. (2016) Conditions of quality assurance of railway wheels restored by surfacing. Science and progress of transport. Visnyk DNUZT im. V. Lazaryana, 5(65), 136–151.
- Markashova, L.I., Poznyakov, V.D., Berdnikova, E.N. et al. (2014) Effect of structural factors on mechanical properties and crack resistance of welded joints of metals, alloys and composite materials. The Paton Welding J., 6/7, 22–28. https://doi.org/10.15407/tpwj2014.06.04
- (1990) Strength of welded joints under alternating loadings. Ed. by V.I. Trufyakov, Kiev: Naukova Dumka.
- Haivoronskyi, O.A., Poznyakov, V.D., Markashova, L.I. et al. (2016) Structure and mechanical properties of the heat-affected zone of restored railway wheels. Sci., 51(4), 563–569. https://doi.org/10.1007/s11003-016-9876-6
- Gajvoronsky, O.A., Poznyakov, V.D., Klapatyuk, A.V. (2014) Method of restoration of high-carbon steel products. 107301, Ukraine. Int. Cl. B23P 6/00.