Eng
Ukr
Rus
Print
2018 №12 (15) DOI of Article
10.15407/tpwj2018.12.16
2018 №12 (01)

The Paton Welding Journal 2018 #12
TPWJ, 2018, #11-12, 140-144 pages
 

Journal                    The Paton Welding Journal
Publisher                 International Association «Welding»
ISSN                      0957-798X (print)
Issue                       #11-12, 2018 (November)
Pages                      140-144
 
 
Effect of multi-pass friction stir processing on the microstructure and mechanical properties of dual phase steel

T. Küçükömeroğlu1, S.M. Aktarer2, G. İpekoğlu3 and G. Çam3
1Department of Mechanical Engineering, Karadeniz Technical University, Trabzon, Turkey. E-mail: tkomer@ktu.edu.tr
2Department of Automotive Technology, Recep Tayyip Erdogan University, Rize, Turkey. E-mail: semih.aktarer@erdogan.edu.tr
3Department of Mechanical Engineering, Iskenderun Technical University, 31200 İskenderun-Hatay, Turkey. E-mail: guven.ipekoglu@iste.edu.tr; gurel.cam@iste.edu.tr

Dual phase (DP) steels have been widely used in the automotive industry due to the excellent engineering properties such as high strength and good formability. However, attempts have recently been ongoing to improve their mechanical and formability properties in order to achieve further weight savings. Mechanical and microstructural properties of DP steel can be improved by severe plastic deformation (SPD) techniques without changing their chemical compositions. Among SPD methods, friction stir processing (FSP) is a new method used to enhance the properties of plate and/or sheet types of metals. Therefore, the effect of multi-pass FSP (M-FSP) on the microstructure and mechanical performance of a DP steel (i.e., DP600) was investigated in the current study. M-FSP was applied to dual phase steel at the 4mm steps. FSP resulted in a refined microstructure which brought about a considerable increase in both hardness and strength values. After FSP, islands of martensite as the secondary phase in the microstructure have been broken and disturbed by the rotational pin. The processed region consists of ferrite, bainite and martensite. The hardness value increased from 210 HV0.2 to about 360 HV0.2 after M-FSP. 36 Ref., 1 Table, 4 Figures.
Keywords: friction stir processing, dual-phase steel, fine grained microstructure, mechanical properties
 
Received:                16.07.18
Published:               23.11.18
 
 
References
1. Rashid MS. Dual Phase Steels. Ann Rev Mater Sci 1981; 11: 245-67. https://doi.org/10.1146/annurev.ms.11.080181.001333
2. Nıshımoto A, Hosoya Y, Nakaoka K. A new type of dual-phase steel sheet for automobile outer body panels. Trans Iron Steel Inst Japan 1981; 21: 778-82. https://doi.org/10.2355/isijinternational1966.21.778
3. Fonstein N. 7 - Dual-phase steels*. In: Rana R, Singh SB, editors. Automot. Steels, Woodhead Publishing; 2017, p. 169–216. https://doi.org/10.1016/B978-0-08-100638-2.00007-9
4. Abid NH, Abu Al-Rub RK, Palazotto AN. Micromechanical finite element analysis of the effects of martensite morphology on the overall mechanical behavior of dual phase steel. Int J Solids Struct 2017; 104-105: 8-24. https://doi.org/10.1016/j.ijsolstr.2016.11.005
5. Kundu A, Field DP. Influence of plastic deformation heterogeneity on development of geometrically necessary dislocation density in dual phase steel. Mater Sci Eng A 2016; 667: 435-43. https://doi.org/10.1016/j.msea.2016.05.022
6. Ashrafi H, Shamanian M, Emadi R, Saeidi N. A novel and simple technique for development of dual phase steels with excellent ductility. Mater Sci Eng A 2017; 680: 197-202. https://doi.org/10.1016/j.msea.2016.10.098
7. Son Y Il, Lee YK, Park KT, Lee CS, Shin DH. Ultrafine grained ferrite-martensite dual phase steels fabricated via equal channel angular pressing: Microstructure and tensile properties. Acta Mater 2005; 53: 3125-34. https://doi.org/10.1016/j.actamat.2005.02.015
8. Park K-T, Lee YK, Shin DH. Fabrication of ultrafine grained ferrite/martensite dual phase steel by severe plastic deformation. ISIJ Int 2005; 45: 750-5. https://doi.org/10.2355/isijinternational.45.750
9. Ma ZY. Friction stir processing technology: A review. Metall Mater Trans A 2008; 39: 642-58. https://doi.org/10.1007/s11661-007-9459-0
10. Mishra RS, Mahoney MW. Friction stir welding and processing. ASM Int 2007: 368.
11. Çam G, İpekoğlu G, Küçükömeroğlu T, Aktarer SM. Applicability of friction stir welding to steels, Journal of Achievements in Materials and Manufacturing Engineering (JAMME) 2017; 80 (2): 65-85. https://doi.org/10.5604/01.3001.0010.2027
12. Çam G, İpekoğlu G. Recent developments in joining of aluminium alloys, Int. J. Adv. Manuf. Technol. 2017; 91 (5-8): 1851-66. https://doi.org/10.1007/s00170-016-9861-0
13. Çam G, Mıstıkoğlu S. Recent developments in friction stir welding of Al-alloys, Journal of Materials Engineering and Performance (JMEPEG) 2014; 23 (6): 1936-53. https://doi.org/10.1007/s11665-014-0968-x
14. Çam G. Friction stir welded structural materials: Beyond Al-alloys', Int. Mater. Rev. 2011; 56 (1): 1-48. https://doi.org/10.1179/095066010X12777205875750
15. Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R Reports 2005; 50: 1-78. https://doi.org/10.1016/j.mser.2005.07.001
16. Padhy GK, Wu CS, Gao S. Friction stir based welding and processing technologies - processes, parameters, microstructures and applications: A review. J Mater Sci Technol 2018; 34: 1-38. https://doi.org/10.1016/j.jmst.2017.11.029
17. Węglowski MS. Friction stir processing – State of the art. Arch Civ Mech Eng 2018; 18: 114-29. https://doi.org/10.1016/j.acme.2017.06.002
18. Chaudhary A, Dev AK, Goel A, Butola R, Ranganath MS. The mechanical properties of different alloys in friction stir processing: A review. Mater Today Proc 2018; 5: 5553-62. https://doi.org/10.1016/j.matpr.2017.12.146
19. Sudhakar M, Rao CHS, Saheb KM. Production of surface composites by friction stir processing-A review. Mater Today Proc 2018; 5: 929-35. https://doi.org/10.1016/j.matpr.2017.11.167
20. Moustafa E. Effect of multi-pass friction stir processing on mechanical properties for AA2024/Al2O3 nanocomposites. Materials (Basel) 2017; 10: 1053. https://doi.org/10.3390/ma10091053
21. Chen Y, Ding H, Malopheyev S, Kaibyshev R, Cai Z Hui, Yang W jing. Influence of multi-pass friction stir processing on microstructure and mechanical properties of 7B04-O Al alloy. Trans Nonferrous Met Soc China (English Ed 2017; 27: 789-96. https://doi.org/10.1016/S1003-6326(17)60090-6
22. El-Rayes MM, El-Danaf EA. The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082. J Mater Process Technol 2012; 212: 1157-68. https://doi.org/10.1016/j.jmatprotec.2011.12.017
23. Nakata K, Kim YG, Fujii H, Tsumura T, Komazaki T. Improvement of mechanical properties of aluminum die casting alloy by multi-pass friction stir processing. Mater Sci Eng A 2006; 437: 274-80. https://doi.org/10.1016/j.msea.2006.07.150
24. Ramesh KN, Pradeep S, Pancholi V. Multipass friction-stir processing and its effect on mechanical properties of aluminum alloy 5086. Metall Mater Trans A Phys Metall Mater Sci 2012; 43: 4311-9. https://doi.org/10.1007/s11661-012-1232-3
25. Singh SK, Immanuel RJ, Babu S, Panigrahi SK, Janaki Ram GD. Influence of multi-pass friction stir processing on wear behaviour and machinability of an Al-Si hypoeutectic A356 alloy. J Mater Process Technol 2016; 236: 252-62. https://doi.org/10.1016/j.jmatprotec.2016.05.019
26. Luo XC, Zhang DT, Zhang WW, Q C, Chen DL. Tensile properties of AZ61 magnesium alloy produced by multi-pass friction stir processing: Effect of sample orientation. Mater Sci Eng A 2018; 725: 398-405. https://doi.org/10.1016/j.msea.2018.04.017
27. Xu N, Bao Y. Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling. Mater Sci Eng A 2016; 655: 292-9. https://doi.org/10.1016/j.msea.2016.01.009
28. Alavi Nia A, Omidvar H, Nourbakhsh SH. Effects of an overlapping multi-pass friction stir process and rapid cooling on the mechanical properties and microstructure of AZ31 magnesium alloy. Mater Des 2014;58:298–304. https://doi.org/10.1016/j.matdes.2014.01.069
29. Fattah-Alhosseini A, Attarzadeh FR, Vakili-Azghandi M. Effect of multi-pass friction stir processing on the electrochemical and corrosion behavior of pure titanium in strongly acidic solutions. Metall Mater Trans A Phys Metall Mater Sci 2017; 48: 403-11. https://doi.org/10.1007/s11661-016-3854-3
30. John Baruch L, Raju R, Balasubramanian V, Rao AG, Dinaharan I. Influence of multi-pass friction stir processing on microstructure and mechanical properties of die cast Al-7Si-3Cu aluminum alloy. Acta Metall Sin (English Lett 2016; 29: 431-40. doi:10.1007/s40195-016-0405-2).
31. Meenia S, Khan MD F, Babu S, Immanuel RJ, Panigrahi SK, Janaki Ram GD. Particle refinement and fine-grain formation leading to enhanced mechanical behaviour in a hypo-eutectic Al-Si alloy subjected to multi-pass friction stir processing. Mater Charact 2016; 113: 134-43. https://doi.org/10.1016/j.matchar.2016.01.011
32. Esmaily M, Mortazavi N, Osikowicz W, Hindsefelt H, Svensson JE, Halvarsson M, et al. Influence of multi-pass friction stir processing on the corrosion behavior of an Al-Mg-Si slloy. J Electrochem Soc 2016; 163: C124-30. https://doi.org/10.1149/2.1091603jes
33. Padhy GK, Wu CS, Gao S. Friction stir based welding and processing technologies - processes, parameters, microstructures and applications: A review. J Mater Sci Technol 2018; 34: 1-38. https://doi.org/10.1016/j.jmst.2017.11.029
34. Liu FC, Hovanski Y, Miles MP, Sorensen CD, Nelson TW. A review of friction stir welding of steels: Tool, material flow, microstructure, and properties. J Mater Sci Technol 2018; 34: 39-57. https://doi.org/10.1016/j.jmst.2017.10.024
35. Miles MP, Pew J, Nelson TW, Li M. Comparison of formability of friction stir welded and laser welded dual phase 590 steel sheets. Sci Technol Weld Join 2006; 11: 384-8. https://doi.org/10.1179/174329306X107737
36. Kang HC, Park BJ, Jang JH, Jang KS, Lee KJ. Determination of the continuous cooling transformation diagram of a high strength low alloyed steel. Met Mater Int 2016; 22: 949-55. https://doi.org/10.1007/s12540-016-6269-1
>