Позорная война рф против Украины

Начата 20 февраля 2014 и полномасштабно продолжена 24 февраля 2022 года. С первых же минут рф ведет ее с нарушением законов и правил войны, захватывает атомные станции, уничтожает бомбардировками мирное население и объекты критической инфраструктуры. Правители и армия рф - военные преступники. Все, кто платит им налоги или оказывают какую-либо поддержку - пособники терроризма. Народ Украины вас никогда не простит и ничего не забудет.

2020 №05 (07) DOI of Article
2020 №05 (01)

The Paton Welding Journal 2020 #05
TPWJ, 2020, #5, 49-55 pages
Additive technologies of polymer materials (Review)

O.P. Masiouchok, M.V. Iurzhenko, R.V. Kolisnyk and M.G. Korab
E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

The paper gives the analysis of the state of the art of 3D technologies of polymer materials, which is based on publications presented both in open sources as well as in a wide range of scientific and technical journals, including the own experience of the authors in 3D printing using thermoplastic and thermosetting polymers. The history of additive technologies, state of the art and trends of the development of the market of three-dimensional printing are considered. The classification of the most widespread in the world technologies of additive manufacturing of products from polymer materials depending on the methods of processing plastics is offered, their short description is given, their features, advantages and disadvantages are presented. 27 Ref., 1 Table, 6 Figures.
Keywords: additive technologies, 3D printing, polymer materials

Received 04.05.2020


1. Diyachenko, V.A., Chelpanov, I.B., Nikiforov, S.O., Hozonhonova, D.D. (2015) Materials and processes of additive technologies (rapid prototyping). Ulan-Ude, Izd-vo BNC SO RAN, Russia [in Russian].
2. Ligon, S.C., Liska, R., Stampfl, J. et al. (2017) Polymers for 3D printing and сustomized additive manufacturing. Chem. Rev., 117, 10212-10290. https://doi.org/10.1021/acs.chemrev.7b00074
3. David, L. Bourella, Joseph J. Beaman, Jr.a, Ming C. Leub, David W. Rosenc (2009) A brief history of additive manufacturing and the 2009 roadmap for additive manufacturing: looking back and looking ahead. RapidTech US-Turkey Workshop on Rapid Technologies, 2009, Istanbul.
4. Hull, CW. (1986) Apparatus for production of threedimensional objects by stereolithography. U.S. Patent 4575330A.
5. Michael Feygin (1986) Apparatus and method for forming an integral object from laminations, U.S., Patent No 872102.
6. Deckard, CR. (1989) Method and apparatus for producing parts by selective sintering. U.S. Patent 4863538A.
7. Crump, SS. (1992) Apparatus and method for creating three-dimensional objects. U.S. Patent 5121329A.
8. James, F. Bredt, Nam P. Suh, Francis, A. Waldman (1995) Three-dimensional printing techniques. U.S. Patent 5387380.
9. Zarek, M., Layani, M., Cooperstein, I. et al. (2016) 3D printing of shape memory polymers for fl exible electronic devices. Adv. Mater., 28, 4449-4454. https://doi.org/10.1002/adma.201503132
10. Salmi, M., Paloheimo, K-S, Tuomi, J. et al. (2013) Accuracy of medical models made by additive manufacturing (rapid manufacturing). J. of Cranio-Maxillofacial Surgery, 41(7), 603-609. https://doi.org/10.1016/j.jcms.2012.11.041
11. https://www.orgprint.com/wiki/3d-pechat/sfery-primenenija-3D-pechati
12. Turner, BN, Strong, R., Gold, SA. (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping J., 0(3), 192-204. https://doi.org/10.1108/RPJ-01-2013-0012
13. http://3dtoday.ru/wiki/3dprint_basics/
14. Kazemi, M., Rahimi, A. (2015) Supports eff ect on tensile strength of the stereolithography parts. Rapid Prototyping, 21, 79-88. https://doi.org/10.1108/RPJ-12-2012-0118
15. Jacobs, PF. (1992) Rapid prototyping & manufacturing: fundamentals of stereolithography. Society of Manufacturing Engineers, New York, U.S.
16. Zhang, X., Jiang, X., Sun, C. (1999) Micro-stereolithography of polymeric and ceramic microstructures. Sensor Actuat A- Phys., 77-149. https://doi.org/10.1016/S0924-4247(99)00189-2
17. http://3dprofy.ru/stereolitografi ya-sla/
18. Gibson, I., Rosen, DW, Stucker, B. (2010) Additive manufacturing technologies. NY: Springer, New York, U.S. https://doi.org/10.1007/978-1-4419-1120-9
19. Kazmer, D. (2017) Three-dimensional printing of plastics. In: Applied Plastics Engineering Handbook (Second Edition). William Andrew Publishing, Amsterdam, The Netherlands, 617-634. https://doi.org/10.1016/B978-0-323-39040-8.00029-8
20. http://3d.globatek.ru/3d_printing_technologies/polyjet/
21. Peyre, P., Rouchausse, Y., Defauchy, D., Régnier, G. (2015) Experimental and numerical analysis of the selective lasersintering (SLS) of PA12 and PEKK semi-crystalline polymers. J. Mater. Process. Technol., 225, 326-336. https://doi.org/10.1016/j.jmatprotec.2015.04.030
22. https://3dprinter.ua/additivnye-tehnologii-chto-jeto/
23. Zlenko, M.A., Nagajcev, M.V., Dovbysh, M.V. (2015) Additive technologies in mechanical engineering: Manual for engineers. Moscow, GNC RF FGUP «NAMI», Russia [in Russian].
24. http://blog.iqb-tech.ru/cjp-technology
25. Antonova, V.S., Osovskaja, I.I. (2017) Additive technologies: A Tutorial. St.-Petersburg, VShTJe SPbGUPTD Russia [in Russian].
26. https://3d-expo.ru/ru/article/izgotovlenie-obektov-metodom-laminirovaniya-lom-78841
27. Androshhuk, G.O. (2017) Additive technologies: perspectives and problems of 3D printing. Nauka, tehnologії, іnnovacіі, 1, 68-77.

Advertising in this issue: