2020 №05 (07) DOI of Article
2020 №05 (01)

Automatic Welding 2020 #05
Avtomaticheskaya Svarka (Automatic Welding), #5, 2020, pp. 53-60

Additive technologies of polymeric materials (Review)

O.P. Masyuchok, M.V. Yurzhenko, R.V. Kolisnyk, M.G. Korab
E.O. Paton Electric Welding Institute of NAS of Ukraine, 11 Kazymyr Malevich Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

The paper gives the analysis of the state of the art of 3D technologies of polymeric materials, which is based on publications presented both in open sources as well as in a wide range of scientifi c and technical journals, including the own experience of the authors in 3D printing using thermoplastic and thermosetting polymers. The history of additive technologies, state of the art and trends of the development of the market of three-dimensional printing are considered. The classifi cation of the most widespread in the world technologies of additive manufacturing of products from polymeric materials depending on the methods of processing plastics is off ered, their short description is given, their features, advantages and disadvantages are presented. 27 Ref., 1 Tabl., 6 Fig.
Keywords: additive technologies, 3D-printing, polymeric materials

Received: 04.05.2020


1. Diyachenko, V.A., Chelpanov, I.B., Nikiforov, S.O., Hozonhonova, D.D. (2015) Materials and processes of additive technologies (rapid prototyping). Ulan-Ude, Izd-vo BNC SO RAN, Russia [in Russian].
2. Ligon, S.C., Liska, R., Stampfl, J. et al. (2017) Polymers for 3D printing and сustomized additive manufacturing. Chem. Rev., 117, 10212-10290. https://doi.org/10.1021/acs.chemrev.7b00074
3. David, L. Bourella, Joseph J. Beaman, Jr.a, Ming C. Leub, David W. Rosenc (2009) A brief history of additive manufacturing and the 2009 roadmap for additive manufacturing: looking back and looking ahead. RapidTech US-Turkey Workshop on Rapid Technologies, 2009, Istanbul.
4. Hull, CW. (1986) Apparatus for production of threedimensional objects by stereolithography. U.S. Patent 4575330A.
5. Michael Feygin (1986) Apparatus and method for forming an integral object from laminations, U.S., Patent No 872102.
6. Deckard, CR. (1989) Method and apparatus for producing parts by selective sintering. U.S. Patent 4863538A.
7. Crump, SS. (1992) Apparatus and method for creating three-dimensional objects. U.S. Patent 5121329A.
8. James, F. Bredt, Nam P. Suh, Francis, A. Waldman (1995) Three-dimensional printing techniques. U.S. Patent 5387380.
9. Zarek, M., Layani, M., Cooperstein, I. et al. (2016) 3D printing of shape memory polymers for fl exible electronic devices. Adv. Mater., 28, 4449-4454. https://doi.org/10.1002/adma.201503132
10. Salmi, M., Paloheimo, K-S, Tuomi, J. et al. (2013) Accuracy of medical models made by additive manufacturing (rapid manufacturing). J. of Cranio-Maxillofacial Surgery, 41(7), 603-609. https://doi.org/10.1016/j.jcms.2012.11.041
11. https://www.orgprint.com/wiki/3d-pechat/sfery-primenenija-3D-pechati
12. Turner, BN, Strong, R., Gold, SA. (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping J., 0(3), 192-204. https://doi.org/10.1108/RPJ-01-2013-0012
13. http://3dtoday.ru/wiki/3dprint_basics/
14. Kazemi, M., Rahimi, A. (2015) Supports eff ect on tensile strength of the stereolithography parts. Rapid Prototyping, 21, 79-88. https://doi.org/10.1108/RPJ-12-2012-0118
15. Jacobs, PF. (1992) Rapid prototyping & manufacturing: fundamentals of stereolithography. Society of Manufacturing Engineers, New York, U.S.
16. Zhang, X., Jiang, X., Sun, C. (1999) Micro-stereolithography of polymeric and ceramic microstructures. Sensor Actuat A- Phys., 77-149. https://doi.org/10.1016/S0924-4247(99)00189-2
17. http://3dprofy.ru/stereolitografi ya-sla/
18. Gibson, I., Rosen, DW, Stucker, B. (2010) Additive manufacturing technologies. NY: Springer, New York, U.S. https://doi.org/10.1007/978-1-4419-1120-9
19. Kazmer, D. (2017) Three-dimensional printing of plastics. In: Applied Plastics Engineering Handbook (Second Edition). William Andrew Publishing, Amsterdam, The Netherlands, 617-634. https://doi.org/10.1016/B978-0-323-39040-8.00029-8
20. http://3d.globatek.ru/3d_printing_technologies/polyjet/
21. Peyre, P., Rouchausse ,Y., Defauchy, D. , Régnier, G. (2015) Experimental and numerical analysis of the selective lasersintering (SLS) of PA12 and PEKK semi-crystalline polymers. J. Mater. Process. Technol., 225, 326-336. https://doi.org/10.1016/j.jmatprotec.2015.04.030
22. https://3dprinter.ua/additivnye-tehnologii-chto-jeto/
23. Zlenko, M.A., Nagajcev, M.V., Dovbysh, M.V. (2015) Additive technologies in mechanical engineering: Manual for engineers. Moscow, GNC RF FGUP «NAMI», Russia [in Russian].
24. http://blog.iqb-tech.ru/cjp-technology
25. Antonova, V.S., Osovskaja, I.I. (2017) Additive technologies: A Tutorial. St.-Petersburg, VShTJe SPbGUPTD Russia [in Russian].
26. https://3d-expo.ru/ru/article/izgotovlenie-obektov-metodom-laminirovaniya-lom-78841
27. Androshhuk, G.O. (2017) Additive technologies: perspectives and problems of 3D printing. Nauka, tehnologії, іnnovacіі, 1, 68-77.

Advertising in this issue: