2021 №06 (04) DOI of Article
2021 №06 (06)

The Paton Welding Journal 2021 #06
The Paton Welding Journal, 2021, #6, 32-35 pages

Investigation of the presence of Mn4+ in welding aerosols using rfs method

O.M. Korduban1, V.V. Trachevskyi2, T.V. Kryshchuk1, I.R. Yavdoshchyn3 and V.V. Holovko3

1V.I. Vernadsky Institute of General and Inorganic Chemistry of the NAS of Ukraine 33/34 Palladin Prosp., 03142, Kyiv, Ukraine
2Technical Center of the NAS of Ukraine 13 Pokrovska Str., 04070, Kyiv, Ukraine
3E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail:

Toxicity of welding aerosol significantly affects the choice of the type of electrodes for arc welding. Modern research methods allow determining the content of divalent and trivalent manganese particles in the solid component of welding aerosol. Studies were carried out to determine the ability of detecting the presence of ions in the most toxic tetravalent manganese in the solid component of welding aerosol. The possibility of using the method of RFS analysis for fixing manganese ions in the Mn4+ state in welding aerosols is shown. 9 Ref., 3 Tables, 2 Figures.
Keywords: welding, electrodes, aerosol, toxicity, manganese, X-ray fluorescence spectra

Received 15.03.2021


1. Pokhodnya, I.K., Gorpenyuk, V.N., Milichenko, S.S. et al. (1990) Metallurgy of arc welding. Processes in arc and melting of electrodes. Ed. by I.K. Pokhodnya. Kiev, Naukova Dumka [in Russian].
2. Grishagin, V.M. (2011) Welding aerosol: Formation, examination, localization, application. Tomsk, TPU [in Russian].
3. Qiang, Zhen, Ruifang, Chen, Kai, Van, Rong, Li (2007) Synthesis of ZrO2-HfO2-Y2O3-Sc2O3 Nano-Particles by Sol-Gel Technique in Aqueous Solution of Alcohol. J. of Rare Earths, 25, 2, 199-203.
4. Briggs, D., Seach, M.P. (1983) Practical surface analysis by Auger and X-ray photoelectron spectroscopy, John Wiley & Sons, Chichester - New York.
5. Diagne, C., Idriss, H., Pearson, al. (2004) Effi cient hydrogen production by ethanol reforming over Rh catalysts. Eff ect of addition of Zr on CeO2 for the oxidation of CO to CO2. Comptes Rendus Chimie, 7, 6, 617-622.
6. Foschini, C.R., Souza, D.P.F., Paulin Filho, P.I., Varela, J.A. (2001) AC impedance study of Ni, Fe, Cu, Mn doped ceria stabilized zirconia ceramics. J. Eur. Cer. Soc., 21, 9: 1143-1149.
7. Yanmei, Kan, Guojun, Zhang, Peiling, Wang et al. (2006) Yb2O3 and Y2O3 co-doped zirconia ceramics. Ibid, 26, 16, 3607-3612.
8. Markaryan, G.L., Ikryannikova, L.N., Muravieva, G.P. et. al. (1999) Red-ox properties and phase composition of CeO2-ZrO2 and Y2O3-CeO2-ZrO2 solid solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 151, 3, 435.
9. Marrero-López, D., Peña-Martínez, J., Ruiz-Morales, J.C. et al. (2008) Phase stability and ionic conductivity in substituted La2W2O9. Bol. Soc. Esp. Ceram. V., 47, 4, 213-218.