Print

2021 №10 (06) DOI of Article
10.37434/tpwj2021.10.07
2021 №10 (08)

The Paton Welding Journal 2021 #10
The Paton Welding Journal, 2021, #10, 47-51 pages

Effect of the angle of incidence of abrasive particles on the erosive wear resistance of HVOF-sprayed composite coatings

M. Szymura


Silesian University of Technology Department of Welding 18A Konarskiego Str., 44-100, Gliwice, Poland

Abstract
The study presents test results concerning resistance to impingement erosion caused by solid particles transported in the gas stream. The angle at which the erosive jet affected the HVOF-sprayed coatings made using the Ni–WC flux-cored wire amounted to 30° and 90°. The study included microhardness measurements and the microscopic metallographic specimens of the deposited (sprayed) coatings.
Keywords: thermal spray, wire-high-velocity oxy-fuel (W-HVOF), erosion, flux cored wire

Received: 22.09.2021
Accepted: 11.11.2021

References

1. Berger, L. M., Saaro, S., Naumann, T. et al. (2008) Microstructure and properties of HVOF-sprayed chromium alloyed WC-Co and WC-Ni coatings. Surface and Coatings Technology, 202(18), 4417-4421. https://doi.org/10.1016/j.surfcoat.2008.04.019
2. Chen, Y., Wu, Y., Hong, S. et al. (2020) The effect of impingement angle on erosion wear characteristics of HVOF sprayed WC-Ni and WC-Cr3C2-Ni cermet composite coatings. Materials Research Express, 7(2), 026503. https://doi.org/10.1088/2053-1591/ab6d31
3. Cheng, D., Xu, Q., Trapaga, G., Lavernia, E.J. (2001) The effect of particle size and morphology on the in-flight behavior of particles during high-velocity oxyfuel thermal spraying. Metallurg. and Mater. Transact. B, 32B, 525-535. https://doi.org/10.1007/s11663-001-0037-3
4. Eyre, T.S. (1976) Wear characteristics of metals. Tribology Int., 9(5), 03-212. https://doi.org/10.1016/0301-679X(76)90077-3
5. Hussainova, I., Kubarsepp, J., Pirso, J. (2001) Mechanical properties and features of erosion of cermets. Wear, 50(1-12), 818-825. https://doi.org/10.1016/S0043-1648(01)00737-2
6. Kleis, I., Kulu, P. (2008) Solid particle erosion: occurrence, prediction and control. Springer-Verlag London Limited, 19-21, 107-108.
7. Oka, Y.I., Ohnogi, H., Hosokawa, T., Matsumura M. (1997) The impact angle dependence of erosion damage caused by solid particle impact. Wear, 203, 573-579. https://doi.org/10.1016/S0043-1648(96)07430-3
8. Qiao, L., Wu, Y., Hong, S. et al. (2021) Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying. Ceramics Int., 47(2), 1829-1836. https://doi.org/10.1016/j.ceramint.2020.09.009
9. Staniša, B., Ivušić, V. (1995) Erosion behaviour and mechanisms for steam turbine rotor blades. Wear, 186, 95-400. https://doi.org/10.1016/0043-1648(95)07136-9
10. Tu, J.P., Liu, M.S., Mao, Z.Y. (1997) Erosion resistance of Ni-WC self-fluxing alloy coating at high temperature. Wear, 209(1-2), 43-48. https://doi.org/10.1016/S0043-1648(96)07457-1
11. Welding Alloys Group` catalogue (2018) Cored Wires. Hardfacing. Cladding - Weld overlay - Surfacing.
12. User manual HVOF-W1000 (2013) HVOF-W1000 Hochgeschwindigkeitsflammspritzanlage für Draht.

Suggested Citation

M. Szymura (2021) Effect of the angle of incidence of abrasive particles on the erosive wear resistance of HVOF-sprayed composite coatings. The Paton Welding J., 10, 47-51.