Print

2022 №01 (01) DOI of Article
10.37434/tpwj2022.01.02
2022 №01 (03)

The Paton Welding Journal 2022 #01
The Paton Welding Journal, 2022, #1, 9-13 pages

Multiple-wire submerged arc welding of high-strength fine-grained steels

S. Gook1, B. El-Sari1, M. Biegler1, M. Rethmeier1, F. Lichtenthäler2, M. Stark2


1Fraunhofer Institute for Production Systems and Design Technology Pascalstrasse 8–9, 10587, Berlin, Germany. E-mail: sergej.gook@ipk.fraunhofer.de
2SMS group GmbH, Hirtenwiese 4, 57578, Elkenroth, Germany

Abstract
Ensuring the required mechanical-technological properties of welds is a critical issue in the application of multi-wire submerged arc welding processes for welding high-strength fine-grained steels. Excessive heat input is one of the main causes for microstructural zones with deteriorated mechanical properties of the welded joint, such as a reduced notched impact strength and a lower structural robustness. A process variant is proposed which reduces the weld volume as well as the heat input by adjusting the welding wire configuration as well as the energetic parameters of the arcs, while retaining the advantages of multiwire submerged arc welding such as high process stability and production speed.
Keywords: submerged arc welding, high-strength fine-grained steels, mechanical properties of the joints, energy parameters of the arc

Received: 23.12.2021
Accepted: 07.02.2022

References

1. Brensing, K.H., Sommer, B. Herstellverfahren für Stahlrohre. Salzgitter Großrohre GmbH. www.wv-stahlrohre.de/fileadmin/ pdf/Stahlrohre_Herstellverfahren.pdf
2. DVS Merkblatt 0915 (02/2000) Unterpulver-Mehrdrahtschweißen 3. Moeinifar, S., Kokabi, A.H., Hosseini, H.M. (2011) Role of tandem submerged arc welding thermal cycles on properties of the heat affected zone in X80 microalloyed pipe line steel. J. Materials Proc. Technology, 211(3), 368-375. https://doi.org/10.1016/j.jmatprotec.2010.10.011
3. Hochhauser, D.I.F., Rauch, M.R. (2012) Influence of the soft zone on the strength of welded modern HSLA steels. Welding in the World, 56(5-6), 77-85. https://doi.org/10.1007/BF03321352
4. Maurer, W., Ernst, W., Rauch, R. et al. (2013) Einfluss der Weichen Zone auf die mechanischen Eigenschaften hochfester Schweißverbindungen. Schweiss- & Prüftechnik, 10-15.
5. Bang, K.S., Kim, W.Y. (2002) Estimation and prediction of HAZ softening in thermomechanically controlled-rolled and accelerated-cooled steel. Welding J. New York, 81(8), 174-S.
6. Sirin, K., Sirin, S.Y., Kaluc, E. (2016) Influence of the interpass temperature on t8/5 and the mechanical properties of submerged arc welded pipe. J. of Materials Proc. Technology, 238, 152-159. https://doi.org/10.1016/j.jmatprotec.2016.07.008
7. Viano, D.M., Ahmed, N.U., Schumann, G.O. (2000) Influence of heat input and travel speed on microstructure and mechanical properties of double tandem submerged arc high strength low alloy steel weldments. Sci. and Technol. of Welding and Joining, 5(1), 26-34. https://doi.org/10.1179/stw.2000.5.1.26
8. Aichele, G. (1994) Leistungskennwerte für Schweißen und Schneiden. Fachbuchreihe Schweißtechnik. DVS-Verlag GmbH Düsseldorf.
9. Norm DIN EN 10225:2009-10. Schweißgeeignete Baustähle für feststehende Offshore-Konstruktionen - Technische Lieferbedingungen. Deutsche Fassung EN 10225:2009
10. Wietrzniok, H., Lichtenthäler. F. (2014) Moderne Großrohrfertigung - Neue Hochleistungs-Schweißstromquelle für alle Lichtbogenschweißverfahren. DVS Berichte, 306, 19-25, DVS-Verlag, Düsseldorf 2014.
11. Hulka, K. (2005) The role of niobium in low carbon Bainitic HSLA Steel. In: Proc. of 1st Intern. Conf. on Super-High Strength Steels (Rome, Italy, November 2005).
12. Knoop, F.M., Bremer S., Flaxa V. et al. (2011) The processing of helical-welded large diameter pipes of grade X80 with 23.7 mm wall thickness and their properties. In: Proc. of Intern. Seminar on Welding of High Strength Pipeline Steels (Araxa, Brazil, November), 209-229.
13. Frantov, I., Permyakov, I., Bortsov, A. (2011) Improved weldability and criterion for reliability of high strength pipes steels. In: Proc. of Intern. Seminar on Welding of High Strength Pipeline Steels (Araxa, Brazil, November), 247-260.
14. Chengia, Shang, Xiaoxiang, Wang, Quingyou, Liu, Janyan, Fu. (2011) Weldability of higher niobium X80 pipeline steel. In: Proc. of Intern. Seminar on Welding of High Strength Pipeline Steels (Araxa, Brazil, November), 435-453.
15. Khudyakov, A.O., Korobov Yu.S., Danilkin P.A., Kvashnin V.D. (2019) Finite element analysis of heat distribution for multiple-electrode submerged arc welding of high-strength pipe steels. In: Proc. of 13th Intern. Conf. on Mechanical Behaviour of Materials (ICM-13) (Melbourne, Australia), 190-197

Suggested Citation

S. Gook, B. El-Sari, M. Biegler, M. Rethmeier, F. Lichtenthäler, M. Stark (2022) Multiple-wire submerged arc welding of high-strength fine-grained steels. The Paton Welding J., 01, 9-13.