The Paton Welding Journal, 2024, #9, 20-28 pages
Neutron shield materials based on boron carbide–tungsten multilayer composites
L. Chkhartishvili1, N. Barbakadze3, O. Tsagareishvili2, A. Mikeladze2, O. Lekashvili3, K. Kochiashvili3, R. Chedia2
1Georgian Technical University
77 Merab Kostava Ave., 0160, Tbilisi, Georgia. E-mail: levanchkhartishvili@gtu.ge
2F. Tavadze Metallurgy and Materials Science Institute
8b Elizbar Mindeli Str., 0186, Tbilisi, Georgia
3P. Melikishvili Institute of Physical and Organic Chemistry
31a Anna Politkovskaya Str., 0186, Tbilisi, Georgiae
Abstract
Nuclear power industry requires structural materials that effectively absorb neutron radiation. For this purpose, boron and
boron-rich compounds and, in particular, boron carbide B4C and its composites are widely used. Both theoretically and experimentally
it has been shown that one such promising class of materials is boron carbide compositions with tungsten B4C–W:
tungsten phase inclusions containing heavy W atoms provide effective attenuation of the secondary gamma-radiation that
accompany the absorption of primary neutrons by the boron 10B isotope atoms. In this work, the composites with multilayer
morphologies — W/B4C/W, W/B4C/W2B5, W2B5/B4C/W2B5, etc. — in which boron carbide layers alternate with metallic tungsten
and/or tungsten pentaboride ones, are produced and investigated. Surface metallization of boron carbide crystals or grains
with tungsten powder, plate or coating is done by SPS (Spark-Plasma Sintering) and also by standard thermal sintering. SEM
(Scanning Electron Microscopy) structural-morphological, XRD (X-Ray Diffraction) phase- and EDS (Energy Dispersive
Spectrometry) chemical-compositions analysis of the obtained samples establishes that transition layers of W2B5 are formed on
the B4C–W interfaces, which ensures component-layers strong bonding.
Keywords: boron carbide, tungsten, layered composite, metallization, thermal sintering, spark-plasma-sintering, radiation
shield
Received: 01.08.2024
Received in revised form: 04.09.2024
Accepted: 07.10.2024
References
1. Ozer, S.C., Buyuk, B., Tugrul, A.B. et al. (2016) Gamma and neutron shielding behavior of spark plasma sintered boron carbide-tungsten based composites. In: Proc. of 145th Ann. Meeting Suppl. on TMS, Cham, Springer Int. Publ., 449-456.
https://doi.org/10.1002/9781119274896.ch542. Windsor, C.G., Astbury, J.O., Davidson, J.J. et al. (2021) Tungsten boride shields in a spherical tokamak fusion power plant. Nucl. Fusion, 61, 086018 (1-14).
https://doi.org/10.1088/1741-4326/ac48663. Chkhartishvili, L., Chedia, R., Tsagareishvili, O. et al. (2022) Preparation of neutron-capturing boron-containing nanosystems. In: Proc.of 9th Int. Conf. on Exh. Adv. Nano Mater., Victoria, IAEMM, 1-15.
4. Chkhartishvili, L., Makatsaria, Sh., Gogolidze, N. (2023) Boron- containing fine-dispersive composites for neutron-therapy and neutron-shielding. In: Proc.of Int. Sci. Prac. Conf. on Innov. Mod. Challen.-2022, 2023, Tbilisi, Tech. Univ., 221-226.
5. Chkhartishvili, L., Makatsaria, Sh., Gogolidze, N. et al. (2023) Obtaining boron carbide and nitride matrix nanocomposites for neutron-shielding and therapy applications. Condensed Matter, 8(4), 92 (1-27).
https://doi.org/10.3390/condmat80400926. Nabakhtiani, G., Chkhartishvili, L., Gigineishvili, A. at al. (2013) Attenuation of gamma-radiation concomitant neutron- absorption in boron-tungsten composite shields. Nano Studies, 8, 259-266.
7. Chkhartishvili, L. (2018) Boron-contained nanostructured materials for neutron-shields. In: Nanostructured Materials for the Detection of CBRN. Eds by J. Bonca, S. Kruchinin. Dordrecht, Springer Science, Ch. 11, 133-154.
https://doi.org/10.1007/978-94-024-1304-5_118. Evans, B.R., Lian, J., Ji, W. (2018) Evaluation of shielding performance for newly developed composite materials. Ann. Nucl. Energy, 116, 1-9.
https://doi.org/10.1016/j.anucene.2018.01.0229. Park, J., Hossain, M.M., Jang, S.G., Kim, M.J. (2024) W@ boron nitride core-shell nanoparticles for radiation shielding. ACS Appl. Nano Mater., 7(9), 10490-10497.
https://doi.org/10.1021/acsanm.4c0088810. Martin, P.M. (2018) Active thin films: Applications for graphene and related materials. Vac. Technol. Coat., 19(11), 6-14.
11. Zinovev, A., Terentyev, D., Chang, C.-C. et al. (2022) Effect of neutron irradiation on ductility of tungsten foils developed for tungsten-copper laminates. Nucl. Mater. Energy, 30, 101133 (1-10).
https://doi.org/10.1016/j.nme.2022.10113312. Sorokin, O., Kuznetsov, B., Lunegova, Y., Erasov, V. (2020) High-temperature composites with a multi-layered structure (Review). Proc. All-Russian Sci. Res. Inst. Aviat. Mater., 88(4-5), 42-53 [in Russian].
https://doi.org/10.18577/2307-6046-2020-0-45-42-5313. Mann, K.S., Mann, S.S. (2021) Py-MLBUF: Development of an online-platform for gamma-ray shielding calculations and investigations. Ann. Nucl. Energy, 150, 107845 (1-22).
https://doi.org/10.1016/j.anucene.2020.10784514. Dai, M., Zhang, Z., Zhu, J. et al. (2009) Influence of interface roughness on reflectivity of tungsten/boron-carbide multilayers with variable bi-layer number by X-ray reflection and diffuse scattering. Chinese Opt. Lett., 7(8), 738-740.
https://doi.org/10.3788/COL20090708.073815. Wang, Y., Long, B.F., Liu, C.Y., Lin, G.A. (2021) Evolution of reduction process from tungsten oxide to ultrafine tungsten powder via hydrogen. High Temp. Mater. Proc., 40, 171-177.
https://doi.org/10.1515/htmp-2021-001716. Chang, M., Leung, C., Wang, D.N., Cheng, D. (1991) Process for CVD deposition of tungsten layer on semiconductor wafer. Pat. US, 5028565, July 2.
17. Kim, S.H. (1994) Deposition of tungsten thin film on silicon surface by low pressure chemical vapor deposition method. J. Korean Chem. Soc., 38(7), 473-479.
18. Plyushcheva, S.V., Mikhailov, G.M., Shabel'nikov, L.G., Shapoval, S.Yu. (2009) Tungsten thin-film deposition on a silicon wafer: The formation of silicides at W-Si interface. Inorg. Mater., 45, 140-144.
https://doi.org/10.1134/S002016850902006X19. Kim, H.-J., Lee, J.-H., Sohn, I.-H. et al. (2002) Preparation of tungsten metal film by spin coating method. Korea-Australia Rheol. J., 14(2), 71-76.
20. Yu, M.L., Ahn, K.Y., Joshi, R.V. (1990) Surface reactions in the chemical vapor deposition of tungsten using WF6 and SiH4 on Al, PtSi, and TiN. J. Appl. Phys., 67, 1055-1061.
https://doi.org/10.1063/1.34579121. Gao, J., Chan, L.H., Wongsenakhum, P. (2010) Methods for improving uniformity and resistivity of thin tungsten films. Pat. US, 7655567B1, February 2.
22. Yang, M., Aarnink, A.A.I., Kovalgin, A.Y. et al. (2016) Comparison of tungsten films grown by CVD and hot-wire assisted atomic layer deposition in a cold-wall reactor. J. Vac. Sci. Technol. A, 34(1), 01A129 (1-10).
https://doi.org/10.1116/1.493638723. Dippel, A.-C., Schneller, T., Lehmann, W., Reichenberg, B., Waser, R. (2008) Tungsten coatings by chemical solution deposition for ceramic electrodes in fluorescent tubes. J. Mater. Chem., 18, 3501-3506.
https://doi.org/10.1039/b802686f24. Mallia, B., Dearnley, P. (2013) Exploring new W-B coating materials for the aqueous corrosion-wear protection of austenitic stainless steel. Thin Solid Films, 549, 204-215.
https://doi.org/10.1016/j.tsf.2013.09.03525. Cao, P., Cao, J.-P., Cao, J.-H. (2021) Boron carbide ceramic metallization preparation method. Pat. CN, 110981550B, December 7[in Chinese].
26. Taran, A.V., Garkusha, I.E., Taran, V.S. et al. (2021) Structure and properties of B4C coatings obtained by RF sputtering with external magnetic field. Springer Proc. Phys., 246, 51-57.
https://doi.org/10.1007/978-3-030-51905-6_527. Barbakadze, N., Sarajishvili, K., Chedia, R. Et al. (2019) Obtaining of ultrafine powders of some boron carbide based nanocomposites using liquid precursors. Nanotechnol. Percep., 15(3), 243-256.
https://doi.org/10.4024/N27BA19A.ntp.15.0328. Chkhartishvili, L., Mikeladze, A., Chedia, R. et al. (2020) Synthesizing fine-grained powders of complex compositions B4C-TiB2-WC-Co. Solid State Sci., 108, 106439 (1-8).
https://doi.org/10.1016/j.solidstatesciences.2020.10643929. Barbakadze, N., Chkhartishvili, L., Mikeladze, A. et al. (2022) Method of obtaining multicomponent fine-grained powders for boron carbide matrix ceramics production. Mater. Today Proc., 51(5), 1863-1871.
https://doi.org/10.1016/j.matpr.2021.08.01330. Chkhartishvili, L., Mikeladze, A., Jalabadze, N. et el. (2022) New low-temperature method of synthesis of boron carbide matrix ceramics ultra-dispersive powders and their spark plasma sintering. Solid State Phenom., 331, 173-184.
https://doi.org/10.4028/p-8n6hzy31. Chkhartishvili, L., Mikeladze, A., Chedia, R. et al. (2022) Combustion synthesis of boron carbide matrix for superhard nanocomposites production. In: Advances in Combustion Synthesis and Technology. Eds by M. Bugdayci, L. Oncel. Singapore, Bentham Sci. Publ., Ch. 4, 66-95.
https://doi.org/10.2174/978981505044812201000732. Windsor, C.G., Astbury, J.O., Davidson, J.J. et al. (2021) Tungsten boride shields in a spherical tokamak fusion power plant. Nucl. Fusion, 61, 086018 (1-14).
https://doi.org/10.1088/1741-4326/ac486633. Park, J., Hossain, M.M., Jang, S.G., Kim, M.J. (2024) W@ boron nitride core-shell nanoparticles for radiation shielding. ACS Appl. Nano Mater., 7(9), 10490-10497.
https://doi.org/10.1021/acsanm.4c0088834. Provenzano, Ch., Marra, M., Caricato, A.P. et al. (2023) Development of a high-efficiency device for thermal neutron detection using a sandwich of two high-purity 10B enriched layers. Sensors, 23, 9831 (1-11).
https://doi.org/10.3390/s23249831
Suggested Citation
L. Chkhartishvili, N. Barbakadze, O. Tsagareishvili, A. Mikeladze, O. Lekashvili, K. Kochiashvili, R. Chedia (2024) Neutron shield materials based on boron carbide–tungsten multilayer composites.
The Paton Welding J., 09, 20-28.