Eng
Ukr
Rus
Триває друк
2025 №03 (06) 2025 №03 (02)

Сучасна електрометалургія 2025 #03
Сучасна електрометалургія, 2025, #3, 3-18 pages

Математичне моделювання процесів тепломасообміну під час електронно-променевого плавлення зливків титанового сплаву Ti–6Al–7Nb

І.В. Крівцун, С.В. Римар, Р.С. Губатюк, В.О. Березос, Д.С. Ахонін, Р.В. Селін

ІЕЗ ім. Є.О. Патона НАН України. 03150, м. Київ, вул. Казимира Малевича, 11. E-mail: elmag@paton.kiev.ua

Реферат
Представлено результати математичного моделювання температурних полів і гідродинамічних ламінарних потоків рідкого металу під час електронно-променевого плавлення зливків титанових сплавів. Розрахунки виконано за допомогою розробленої тривимірної математичної моделі на основі методу скінчених елементів з врахуванням ряду спрощень і припущень. Модель дозволяє визначити закономірності теплових і гідродинамічних процесів, що протікають у прохідному водоохолоджуваному кристалізаторі під час плавлення зливка, та визначити геометрію міжфазової перехідної зони ліквідус–солідус, а відповідно і фронту кристалізації металу, який суттєво впливає на якість металу під час формування зливка. Розраховані параметри процесу плавлення зливків малого діаметра 110 мм титанового сплаву медичного призначення Ti–6Al–7Nb з таким фронтом кристалізації, для якого забезпечується одержання металу високої якості з однорідною структурою. З’ясовано, що на тепломасообмін в рідкому металі суттєво впливає потужність електронного променя і її розподіл по поверхні ванни, а теплопередача в основному обумовлена рухом розплаву. Бібліогр. 30, рис. 16.
Ключові слова: електронно-променеве плавлення, титанові сплави, математичне моделювання, тепломасообмін, фронт кристалізації металу

Отримано 24.06.2025
Отримано у переглянутому вигляді 26.06.2025
Прийнято 31.07.2025

Список літератури

1. Tamayo José, A., Riascos Mateo, Vargas Carlos, A., Baena Libia, M. (2021) Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Heliyon, 7, 1–26. DOI: DOI: https://doi.org/10.1016/j.heliyon.2021.e06892
2. Mahlobo Mandlenkosi, G.R., Chikosha Lethu, Olubambi Peter, A. (2022) Study of the corrosion properties of powder rolled Ti–6Al–4V alloy applied in the biomedical implants. J. of Materials Research and Technology, 18, 3631–3639. DOI: https://doi.org/10.1016/j.jmrt.2022.04.004
3. Mamoun Fellah, Mohamed Labaïz, Omar Assala et al. (2014) Tribological behavior of Ti–6Al–4V and Ti–6Al–7Nb alloys for total hip prosthesis. Advances in Tribology, July, 1–13. DOI: https://doi.org/10.1155/2014/451387
4. Bartha, Kristína, Zháňal, Pavel, Stráský, Josef et al. (2019) Lattice defects in severely deformed biomedical Ti–6Al–7Nb alloy and thermal stability of its ultra-fine grained microstructure. J. of Alloys and Compounds, 788, 881–890. DOI: https://doi.org/10.1016/j.jallcom.2019.02.173
5. Bolzoni, L., Ruiz-Navas, E.M., Gordo, E. (2017) Evaluation of the mechanical properties of powder metallurgy Ti–6Al–7Nb alloy. J. of the Mechanical Behavior of Biomedical Materials, 67, 110–116. DOI: https://doi.org/10.1016/j.jmbbm.2016.12.005
6. Sun, Y., Huang, B., Puleo, D.A. et al. (2016) Improved surface integrity from cryogenic machining of Ti–6Al–7Nb alloy for biomedical applications. Procedia CIRP, 45, 63–66. DOI: https://doi.org/10.1016/j.procir.2016.02.362
7. Wei Guijiang, Tan Meiying, Attarilar Shokouh et al. (2023) An overview of surface modification, a way toward fabrication of nascent biomedical Ti–6Al–4V alloys. J. of Materials Research and Technology, 24, 5896–5921. DOI: https://doi.org/10.1016/j.jmrt.2023.04.046
8. Oktikawati, A., Riastuti, R., Damisih, D. et al. (2024) Electrochemical characteristic and microstructure of Ti–6Al–7Nb alloy by centrifugal casting for orthopedic implant based on ageing time variations. Eastern-European J. of Enterprise Technologies, 2(12), 6–15. DOI: https://doi.org/10.15587/1729-4061.2024.302614
9. Hussain Syed Altaf, Manoj Panchal, Viswanath Allamraju K. et al. (2023) Optimization of wear behavior of heat-treated Ti–6Al–7Nb biomedical alloy by response surface methodology. Environmental Research, 231, Pt 2, 116193. DOI: https://doi.org/10.1016/j.envres.2023.116193
10. Biswal, Smrutiranjan, Tripathy, S., Tripathy, D.K. (2024) Optimisation of PMEDM process parameters for Ti–6Al–7Nb biomedical material. Materials Today: Proceedings. DOI: https://doi.org/10.1016/j.matpr.2024.02.044
11. Cabrini, M., Carrozza, A., Lorenzi, S. et al. (2022) Influence of surface finishing and heat treatments on the corrosion resistance of LPBF-produced Ti–6Al–4V alloy for biomedical applications. J. of Materials Processing Technology, 308, 117730. DOI: https://doi.org/10.1016/j.jmatprotec.2022.117730
12. Krivtsun, I., Rymar, S., Hubatiuk, R. et al. (2024) Construction of a mathematical model of turbulent heat and mass transfer processes for the case of electron beam melting of titanium alloy casts. Eastern-European J. of Enterprise Technologies, Engineering Technological Systems, 5(1). 110–126. DOI: https://doi.org/10.15587/1729-4061.2024.312561
13. Rubinetti, D., Weiss, D.A., Chaudhuri, A., Kraniotis, D. (2018) Modeling approach to facilitate thermal energy management in buildings with phase change materials. In: Proc. of Conf. on Comsol 2018, Lausanne, Switzerland, 7. https://www.comsol.com/paper/modeling-approach-to-facilitate-thermal-energy-management-with-phase-change-mate-63481
14. Akhonin, S., Pikulin, O., Berezos, V. et al. (2022) Determining the structure and properties of heat-resistant titanium alloys VT3-1 and VT9 obtained by electron-beam melting. Eastern-European J. of Enterprise Technologies, 5(12), 6–12. DOI: https://doi.org/10.15587/1729-4061.2022.265014
15. Akhonin, S.V., Pikulin, O.M. (2019) Investigation of effect of electron beam surface treatment of titanium alloy ingots on structure and properties of melted metal. In: Proc. of IOP Conf. on Series: Materials Science and Engineering, 582 (1), 012047. DOI: https://doi.org/10.1088/1757-899x/582/1/012047
16. Berezos, V.O., Akhonin, D.S. (2023) Electron beam melting of titanium alloys for medical purposes. The Paton Welding J., 6, 41–48. DOI: https://doi.org/10.37434/tpwj2023.06.06
17. Akhonin, S.V., Berezos, V.О., Bondar, O.I. et al. (2021). Mathematical modeling of hydrodynamic and thermal processes during the crystallization of titanium ingots EBM. Suchasna Elektrometalurhiya, 1, 27–34 [in Ukrainian]. DOI: https://doi.org/10.37434/sem2021.01.03
18. Akhonin, S.V., Gorislavets, Yu.M., Gluhenkyi, A.I. et al. (2019) Modeling of hydrodynamic and thermal processes in a crystallizer during electron beam melting with an intermediate capacity. Suchasna elektrometalurhiya, 4, 9–17 [in Russian]. DOI: https://doi.org/10.15407/sem2019.04.02
19. Akhonin, S.V., Krivtsun, I.V., Berezos, V.O. et al. (2024) Mathematical modeling of heat and mass transfer processes of electron beam melting of ingots from high-strength titanium alloys. In: Proc. of VII Inter. Conf. on Welding and Related Technologies, 7–10 October 2024, Yaremche, Ukraine. Kyiv, 119–124, Kyiv, International Association «Welding». DOI: https://doi.org/10.1201/9781003518518-25
20. Ben-David, O., Levy, A., Mikhailovich, B., Azulay, A. (2013) 3D numerical and experimental study of gallium melting in a rectangular container. Inter. J. of Heat Mass Transfer, 67, 260–271. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.07.058
21. Heat Transfer Module User’s Guide. Version: Comsol 5.4. http://www.comsol.com
22. Versteeg, H.K., Malalasekera, W. (2007) An introduction to computational fluid dynamics. The finite volume method. Harlow, Pearson Prentice Hall.
23. Avnaim, M.H., Levy, A., Mikhailovich, B. et al. (2016) Comparison of three-dimensional multidomain and single-domain models for the horizontal solidification problem. J. of Heat Transfer, 138(11), 112301-1–112301-11. DOI: https://doi.org/10.1115/1.4033700
24. Truong Van-Doi, Yong-Taek Hyun, Jong Woo Won et al. (2022) Numerical simulation of the effects of scanning strategies on the aluminum evaporation of titanium alloy in the electron beam cold hearth melting process. materials, 15. DOI: https://doi.org/10.3390/ma15030820
25. Yao Lu, Maijer Daan M., Cockcroft Steve L. et al. (2018) Quantification of heat transfer phenomena within the melt pool during the plasma arc re-melting of titanium alloys. Inter. J. of Heat and Mass Transfer., 126, 1123–1133. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.051
26. Belyaev, N.M. (1989) Fundamentals of Heat Transfer. Kyiv, Vyshcha Shkola [in Russian].
27. Mills, K. (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead publishing Limited.
28. Efimov, A.I., Belorukova, L.P., Vasilkova, I.V., Chechev, V.P. (1983) Properties of inorganic compounds. Directory. Leningrad, Khimiya.
29. Langmuir, I. (1913) The vapor pressure of metallic tungsten. Physical Review, 2(5), 329–342. DOI: https://doi.org/10.1103/ physrev.2.329
30. Berezos, V.O., Akhonin, D.S. (2023) Electron beam melting of titanium alloys for medical purposes. The Paton Welding J., 6, 41–48. DOI: https://doi.org/10.37434/tpwj2023.06.06

Реклама в цьому номері: