“The Paton Welding Journal” #08_2023 will be freely distributed from 11 to 15 September during the exhibition SCHWEISSEN & SCHNEIDEN 2023, Messe Essen, Norbertstrasse 2, Essen, Germany at the stand of the Paton Welding Institute: Hall 8 Stand 8B29.1.
You can also order this issue of the Journal in electronic form for free.
Send applications to E-mail: journal@paton.kiev.ua
Contents of the issue
Fatigue resistance of steel welded joints of different strength with steady residual stresses
V.A. Degtyarev
G.S. Pisarenko Institute for Problems of Strength of the NAS of Ukraine
2 Timiryazevskaya Str., 01014, Kyiv, Ukraine. E-mail: ips@ipp.kiev.ua
Abstract A work proposes a comparative analysis of the diagrams of cycle limiting stresses in welded joints of low-carbon and low-alloy steels of different strength under condition that they have the same level of steady residual stresses. By the example of testing of St3sp (killed), 09G2S and 14KhMNDFR steel butt welded joints it is shown that the welded joints with larger mechanical properties have higher endurance limits in all investigated range of change of the limiting steady residual stresses. It was found that the welded joints of stronger steels have also higher values of endurance limit at the same relative value of cycle average stress. They rise more intensively with increase of the relative values of cycle average stress. 10 Ref., 2 Tables, 5 Figures.
Keywords: welded joint, cycle stress amplitude, cycle average stress, yield limit, steady residual stress, endurance limit, diagram of cycle limiting stresses
Received: 23.01.18
Published: 12.04.18
References
Knysh, V.V. Solovej, S.A. (2017) Improvement of service life of welded joints with fatigue damages. Kiev, KPI [in Russian].
Degtyarev, V.A. (2016) Prediction of limiting amplitudes of cycle stresses of welded joints with steady residual stresses. The Paton Welding J., 10, 14–19. https://doi.org/10.15407/tpwj2016.10.03
Troshchenko, V.T., Tsybanev, G.V., Gryaznov, B.A., Nalimov, Yu.S. (2009) Strength of materials and structures. Fatigue of metals. Influence of surface state and contact interaction. Kiev, IPS, Vol. 2 [in Russian].
Krizhanovsky, V.I., Kasperskaya, V.V., Pogrebnyak, A.D. (2008) Evaluation of limit state of structural steels under asymmetric multicycle loading by tension, compression, bending and torsion. Problemy Prochnosti, 5, 81–88 [in Russian].
Golub, V.P. (2001) Experimental analysis of high-temperature creep, fatigue and damage. 1: Analysis methods. Appl. Mech., 37, 4, 425–455.
Pavlov, V.F., Kirpichyov, V.A., Ivanov, V.B. (2008) Residual stresses and fatigue resistance of strengthened parts with stress concentrators. Samara, OOO Izd-vo SNTs [in Russian].