Print

2023 №10 (04) DOI of Article
10.37434/tpwj2023.10.05
2023 №10 (06)

The Paton Welding Journal 2023 #10
The Paton Welding Journal, 2023, #10, 30-34 pages

Multipurpose electron beam unit UE-5810

S.V. Akhonin1, V.O. Berezos1, A.Iu. Severin1, V.D. Kornijchuk2, Iu.T. Ishchuk2, O.G. Erokhin2

1E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2SC «SPC «Titan» of the E.O. Paton Electric Welding Institute of the NAS of Ukraine». 26 Raketna Str., Kyiv. E-mail: titan.paton@gmail.com

Abstract
In order to implement the electron beam melting technologies the E.O. Paton Electric Welding Institute of NASU developed a multifunctional electron beam unit UE-5810 of megawatt class, designed for producing ingots of titanium and its alloys of up to 20 tons weight. Description of a multi-purpose universal electron beam unit UE-5810 and its specification are given. Functional features of the components of the unit, technological fixtures and electron gun are described. Electron beam unit UE-5810 is a reliable highly efficient installation of industrial type for melting highly reactive metals and alloys, as well as treatment of the produced ingots by surface melting. 12 Ref., 8 Fig.
Keywords: electron beam unit, electron beam gun, technological fixtures, melting, surface melting, ingot

Received: 12.07.2023
Accepted: 14.11.2023

References

1. Paton, B.E., Trigub, N.P., Akhonin, S.V., Zhuk, G.V. (2006) Electron beam melting of titanium. Kyiv, Naukova Dumka [in Russian].
2. Ladokhin, S.V. (2010) Prospects of creation of electron beam melting installations of new generation in Ukraine. Visnyk DDMA, 3, 170-173 [in Russian].
3. Xiaojun Wang, Zhanqian Chen, Feng Chen et al. (2007) The electron beam cold hearth melting technology. In: Proc. of 11th World Conf. on Titanium (Ti-2007): Science and Technology (3-7 June 2007, Kyoto, Japan). Ed. by M. Niinomi, Vol. 2, 185-188.
4. http://www.antares.com.ua/upload/file/3Titanium_Production_Presentation_rus.pdf
5. Trigub, N.P., Zhuk, G.V., Kornejchuk, V.D. et al. (2007) Commercial electron beam installation UE-5812. Advances in Elektrometallurgy, 1, 9-11.
6. Sobko-Nesteruk, O.E., Tretyak, N.G., Chaika, N.V. et al. (2012) New VT02 furnace for electron beam melting of titanium alloys constructed at the Antares company. Advances in Electrometallurgy, 3, 178-184.
7. Akhonin, S.V., Pikulin, A.N., Berezos, V.A. et al. (2019) Laboratory electron beam unit UE-208M. Suchasna Elektrometal., 3, 15-22 [in Russian]. https://doi.org/10.15407/sem2019.03.03
8. Trigub, N.P., Zhuk, G.V., Pap, P.A. et al. (2003) Electron beam installation UE-121. Advances in Electrometallurgy, 2, 17-20.
9. Paton, B.E., Trigub, N.P., Kozlitin, D.A. et al. (1997) Electron beam melting. Kyiv, Naukova Dumka [in Russian].
10. Paton, B.E., Trigub, N.P., Akhonin, S.V. (2005) Producing of titanium alloys from uncrushed blocks of spongy titanium by electron beam melting. Titan, 2, 23-25 [in Russian].
11. Pikulin, A.N., Zhuk, G.V., Trigub, N.P., Akhonin, S.V. (2003) Electron beam fusion of titanium ingots. Advances in Electrometallurgy, 4, 17-19.
12. Pikulin, A.N. (2016) Electron beam fusion of ingots of complexly- alloyed titanium alloys. Sovrem. Elektrometall., 3, 26-30. https://doi.org/10.15407/sem2016.03.05