Print

2015 №11 (02) DOI of Article
10.15407/tpwj2015.11.03
2015 №11 (04)

The Paton Welding Journal 2015 #11
The Paton Welding Journal, 2015, #11, 24-30 pages
 

Thermal-physical peculiarities of gas-shielded pulse-arc welding using non-consumable electrode (Review)

A.A. Slivinsky, L.A. Zhdanov And V.V. Korotenko


NTUU «Kiev Polytechnic Institute» 37 Pobeda Ave., 03056, Kiev, Ukraine. E-mail: o.slyvinsky@gmail.com
 
 
Abstract
The work studies the main problems of development and possible perspectives for further improvement of inert-gas non-consumable pulse-arc welding. Main technological possibilities and thermal-physical peculiarities of the process are given depending on variation of welding mode parameters. Considered are the directions for development of methods of mathematical modeling of welding process and possible ways of their improvement. Necessity in further investigations of the process for determination of parametric dependencies and development for engineering and scientific purposes of optimum modes of pulse-arc welding using tungsten cathode was grounded. 41 Ref., 7 Figures.
 
Keywords: pulse TIG welding, thermal cycles, mode rigidity, gas-dynamic characteristics, transition processes, discretization, precision, thermocouple, finite element method
 
 
Received:                28.07.15
Published:               21.12.15
 
 
References
  1. Brodsky, A.Ya. (1956) Tungsten-electrode argon-arc welding. Moscow: Mashgiz.
  2. Petrov, A.V. (1961) Technology of inert-gas arc welding: Reference book on welding, Vol. 2, 327-375. Ed. by E.V. Sokolov. Moscow: Mashgiz.
  3. (1985) Actual problems of welding of non-ferrous metals. In: Proc. of 11th All-Union Conf. Kiev: Naukova Dumka.
  4. (1985) Metals science of aluminium alloys. Ed. by S.T. Kishkin. Moscow: Nauka.
  5. Russo, V.L. (1962) Inert-gas welding of aluminium alloys. Leningrad: Sudpromgiz.
  6. Shakhanov, S.B. (2007) Theory and technology of welding production in rocket industry: Manual. St.-Petersburg: Balt.GTU.
  7. Gurevich, S.M., Zamkov, V.N., Kushnirenko, N.A. (1965) Increase of penetration efficiency of titanium alloys in argon-arc welding. Avtomatich. Svarka, 9, 1-7.
  8. Alov, A.A., Shmakov, V.M. (1962) Argon-arc welding with auxiliary argon flow. Svarochn. Proizvodstvo, 3, 13-16.
  9. Terry, S.A., Tyler, W.T. (1958) Inert-gas tungsten-arc welding. Welding and Metal Fabr., 2, 58-61.
  10. Paton, B.E. (1963) Further development of systems of automatic control and regulation of welding processes. Avtomatich. Svarka, 5, 1-6.
  11. Razmyshlyaev, A.D., Patrikeev, A.I., Maevsky, V.R. (1988) Calculated definition of pool contour in step-by-step-arc welding of thick metal. Svarochn. Proizvodstvo, 5, 35-37.
  12. Vagner, F.A. (1980) Equipment and methods of pulsed arc welding. Moscow: Energiya.
  13. (2002) Weld+vision FRONIUS MAGAZINE, 11. pdf. http://www.fronius.com/cps/rde/xbcr/SID-76553F1D-04EC16FD/fronius_brasil/4000062136_ weld_ vision_Nr 9_en.pdf
  14. Petrov, A.V., Slavin, G.A. (1966) Study of technological features of pulsed arc. Svarochn. Proizvodstvo, 2, 1-4.
  15. Slyvinsky, O.A., Bojko, V.P., Prepiyalo, A.O. (2013) Mathematical modeling of heat processes in argon-arc welding of thin stainless steel of ferrite class. In: Proc. of 6th All-Ukr. Interbranch Sci.-Techn. Conf. of Students, Post-Graduate Students and Researches on Welding and Related Processes and Technologies (Kiev, 29-31 May 2013), 14.
  16. Slyvinsky, O.A., Korotenko, V.V. (2014) Mathematical modeling of heat processes of pulsed tungsten argon-arc welding of thin stainless steel. In: Proc. of 7th All-Ukr. Interbranch Sci.-Techn. Conf. of Students, Post-Graduate Students and Researches on Welding and Related Processes and Technologies (Kiev, 14-16 May 2014), 19.
  17. Kovalev, I.M. (1973) Some methods for stabilizing of unstable arc with non-consumable electrode. Svarochn. Proizvodstvo, 6, 3-5.
  18. Kovalev, I.M. (1972) Space stability of moving arc with non-consumable cathode. Ibid., 8, 1-3.
  19. Finkelnburg, V., Mekker, G. (1961) Electric arc and thermal plasma. Moscow: IL.
  20. Kozakov, Yu.M., Stolbov, V.I., Koryagin, K.B. (1986) Lagging of anode spot of moving welding arc. Svarochn. Proizvodstvo, 10, 19-21.
  21. Kim, D., Rhee, S. (2001) Optimization of arc welding process parameters using a genetic algorithm. Welding J., July, 184-189.
  22. Giridharan, P.K., Murugan, N. (2009) Optimization of pulsed GTA welding process parameters for welding of AISI 304L stainless steel sheets. Int. J. Advanced Manufact. Technology, Issue 5, 40, 478-489. https://doi.org/10.1007/s00170-008-1373-0
  23. Babu, S., Senthil Kumar, T. (2008) Optimizing pulsed current gas tungsten arc welding parameters of AA6061 aluminium alloy using Hooke and Jeeves algorithm. Transact. of Nonferrous Metals Soc. of China, 18, 1028-1036. https://doi.org/10.1016/S1003-6326(08)60176-4
  24. Chakravarthy, M.P., Ramanaiah, N., Sundara Siva Rao, B.S.K. (2013) Process parameters optimization for pulsed TIG welding of 70/30 Cu-Ni alloy welds using Taguchi technique. Int. J. Mechanical, Aerospace, Industrial, Mechatronic and Manufact. Eng., 7(4), 342-348.
  25. Arivarasu, M., Devendranath Ramkumar, K., Arivazhagan, N. (2014) Comparative studies of high and low frequency pulsing on the aspect ratio of weld bead in gas tungsten arc welded AISI 304L plates. Proc. Eng., 97, 871-880. https://doi.org/10.1016/j.proeng.2014.12.362
  26. Dyatlov, V.I. (1961) Volt-ampere characteristic of constricted electric arc. Avtomatich. Svarka, 1, 23-26.
  27. Rabkin, D.M., Ivanova, O.N. (1968) Investigation of arc in tungsten arc welding. Ibid., 5, 16-20.
  28. Krivtsun, I.V., Krikent, I.V., Demchenko, V.F. (2013) Modelling of dynamic characteristics of a pulsed arc with refractory cathode. The Paton Welding J., 7, 13-23.
  29. Zhdanov, L.A., Slyvinsky, A.M., Kotyk, V.T. et al. (2003) Possibility of analog-digital converter application for study of alternating current welding arc. Mashynoznavstvo, 2, 38-41.
  30. Zhdanov, L.A., Slyvinsky, A.M., Kopersak, V.M. et al. (2004) Study of alternating current welding arc by personal computer. Nauk. Visti NTUU KPI, 3, 49-55.
  31. Wu, C.S., Gao, J.Q. (2001) Analysis of the heat flux distribution at the anode of a TIG welding arc. Comput. Mater. Sci., 24, 323-327. https://doi.org/10.1016/S0927-0256(01)00254-3
  32. Lu, F., Tang, X., Yao, Yu.S. (2006) Numerical simulation on interaction between TIG welding arc and weld pool. Ibid., 35, 458-465. https://doi.org/10.1016/j.commatsci.2005.03.014
  33. Tanaka, M., Lowke, J.J. (2007) Predictions of weld pool profiles using plasma physics. J. Phys. D: Appl. Phys., 40, 1-23. https://doi.org/10.1088/0022-3727/40/1/R01
  34. Traidia, A., Roger, F., Guyot, E. (2010) Optimal parameters for pulsed gas tungsten arc welding in partially and fully penetrated weld pools. Int. J. Therm. Sci., 49, 1197-1208. https://doi.org/10.1016/j.ijthermalsci.2010.01.021
  35. Traidia, A., Roger, F. (2011) Numerical and experimental study of arc and weld pool behavior for pulsed current GTA welding. Int. J. Heat and Mass Transfer, 54, 2163-2179. https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.005
  36. Petrov, A.V. (1967) Application of sources method for calculation of heat processes in pulsed-arc welding. Fizika i Khimiya Obrab. Materialov, 5, 15-25.
  37. Vagner, F.A. (1975) Calculation of temperatures in product during pulsed welding with exponential pulse shape. Avtomatich. Svarka, 7, 13-15.
  38. Kiselev, S.N., Kiselev, A.S., Kurkin, A.S. et al. (1998) Modern aspects of computer modeling of heat, deformation processes and structure formation in welding and related technologies. Svarochn. Proizvodstvo, 10, 16-24.
  39. Goldak, J.A., Chakravarti, A., Bibby, M. (1984) A new finite element model for welding heat sources. Metallurg. Transact. B, Vol. 15, 229-305. https://doi.org/10.1007/BF02667333
  40. Zhang Tong, Zheng Zhentai, Zhao Ru (2013) A dynamic welding heat source model in pulsed current gas tungsten arc welding. J. Materials Proc. Technology, 213, 2329-2338. https://doi.org/10.1016/j.jmatprotec.2013.07.007