The Paton Welding Journal, 2020, #11, 8-11 pages
The nature of nonmetallic inclusion distribution in the weld metal structural components at arc welding methods
V.V. Holovko
E.O. Paton Electric Welding Institute of the NAS of Ukraine
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
Abstract
With the purpose of expert evaluation of welded joint performance a large number of computer programs have been
developed now for prediction of the weld metal structural composition and their mechanical properties. Such programs
are usually based on multivariate analysis of the processes occurring in the welding arc, and thermodynamics and kinetics
of the processes in the weld pool. It should be noted that at analysis of crystallization and recrystallization reactions
in the weld metal, such programs usually do not take into account the nature of nonmetallic inclusion distribution in
the structural components. There are many studies, which point to a significant impact of the inclusion, depending on
whether they are present on the boundaries or in the body of the grains. The paper shows the need to take into account
the probability of nonmetallic inclusions being in the body of structure grains or on their boundaries at construction of
the numerical models that will allow improving the correspondence of the predicted data and the experimental results
of determination of the mechanical characteristics of weld metal. 5 Ref., 5 Figures.
Keywords: metals science, low-alloy steels, welds, microstructure, numerical modeling, nonmetallic inclusions
Received 19.10.2020
References
1. Sarma, D.S., Karasev, A.V., Jönsson, P.G. (2009) On the Role of Non-metallic Inclusions in the Nucleation of Acicular Ferrite in Steels. ISIJ International, 49, 7, 1063-1074.
https://doi.org/10.2355/isijinternational.49.10632. Cortés, V.H.V., Guerrero, G.A., Granados, I.M. et al. (2019) Effect of Retained Austenite and Non-Metallic Inclusions on the Mechanical Properties of Resistance Spot Welding Nuggets of Low-Alloy TRIP Steels. Metals, 9, 9, 1064; DOI:10.3390/met9101064.
https://doi.org/10.3390/met91010643. Ignatova, A., Ignatov, M. (2015) The Measurement of Hardness and Elastic Modulus of non-Metallic Inclusions in Steely Welding Joints. TEM J., 4, 3, 314-318.
4. Pimenov, A.V. (2015) On influence of nonmetallic inclusions on toughness of low-alloy metal at low temperatures. Voprosy Materialovadeniya, 1, 81, 108-110 [in Russian].
5. Kartashov, M.F., Ignatova, A.M., Fedoseeva, E.M., Ignatov, M.N. (2014) Characteristic of nonmetallic inclusions in welded joints of gas-and-oil pipelines. Neftegazovoe Delo: Electron. J., 2, 80-94 [in Russian].
https://doi.org/10.17122/ogbus-2014-2-80-94
Suggested Citation
V.V. Holovko (2020) The nature of nonmetallic inclusion distribution in the weld metal structural components at arc welding methods.
The Paton Welding J., 11, 8-11.