2022 №12 (01) DOI of Article
2022 №12 (03)

Automatic Welding 2022 #12
Avtomaticheskaya Svarka (Automatic Welding), #12, 2022, pp. 9-19

Features of welding high-strength alloys based on aluminium and beryllium using highly-concentrated heat sources (Review)

S.I. Peleshenko3, V.Yu. Khaskin1, V.M. Korzhyk2, V.V. Kvasnitskyi3, A.A. Grinyuk3, I.M. Klochkov2, D. Chunling1, A.O. Alyoshin2

1China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Advanced Welding Technology. 510650, Guangzhou, China. E-mail: patonjournal@gwi.gd.cn
2E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
3NTUU «Igor Sikorskyi Kyiv Polytechnic Institute». 37 Peremohi Ave., 03056, Kyiv. E-mail: vn.paschenko@ukr.net

Results of welding a wide range of light alloys by highly-concentrated heat sources have been analyzed. It is shown that the characteristic defects are hot cracks, internal pores, HAZ softening, weld sagging, undercuts and irregular reinforcement bead formation. It was found that in order to produce sound joints, it is necessary to thoroughly select welding mode parameters, remove the oxide film from billet edges before welding, ensure reliable protection of the weld pool, and in some cases and it is rational to apply preheating or concurrent heating. One of the advanced methods to minimize the susceptibility to formation of the above-mentioned defects is application of hybrid laser-arc and laser-plasma welding processes. The welds produced by electron beam and laser (СО2- and fiber-optic lasers) welding processes are quite similar visually, by their macrostructure, as well as the main characteristics. The weld strength parameters and heat input required for full penetration of the metal are somewhat different for different welding methods (for fiberoptic laser it is usually 30 % less). 54 Ref., 3 Tabl., 8 Fig.
Keywords: welding, laser, electron beam, laser-arc, laser-plasma, light alloys, aluminium, beryllium, defects, mode parameters, mechanical properties

Received: 02.10.2022


1. Steen, W., Mazumder, J. (2010) Laser Material Processing. London, Springer. https://doi.org/10.1007/978-1-84996-062-5
2. Kuneš, J. (2012) Dimensionless Physical Quantities in Science and Engineering. Elsevier. DOI: https://doi.org/10.1016/ C2011-0-06212-9
3. Doshi, S.J., Gohil, A.V., Mehta, N.D., Vaghasiya, S.R. (2018) Challenges in Fusion Welding of Al alloy for Body in White. Materials Today: Proceedings, 5, 2, 1, 6370-6375. https://doi.org/10.1016/j.matpr.2017.12.247
4. Khokhlatova, L.B., Blinkov, V.V., Kondratyuk, D.I. et al. (2015) Structure and properties of welded joints in sheets from alloys 1424 and V-1461, made by laser welding. Aviation Materials and Technologies , 4, 9-13. https://doi.org/10.18577/2071-9140-2015-0-4-9-13
5. (2019) 6xxx Aluminum Alloy Datasheets, Properties and Selection of Aluminum Alloys. Eds Anderson, K., Weritz, J., Gilbert, J. Kaufman. ASM Handbook. 2B, 374-375. https://doi.org/10.31399/asm.hb.v02b.a0006708
6. (2019) 7xxx Aluminum Alloy Datasheets, Properties and Selection of Aluminum Alloys. Eds Anderson, K., Weritz, J., Gilbert, J. Kaufman. ASM Handbook, 2B, 410-412. https://doi.org/10.31399/asm.hb.v02b.a0006726
7. Malikova, A.G., Ivanova, M.Yu. (2016) High-strength laser welding of aluminum-lithium scandium-doped alloys. AIP Conference Proceedings, 1783, 020148. https://doi.org/10.1063/1.4966441
8. Fridlyander, I.N. (2008) Beryllium alloys - promising active direction of aerospace materials science. VIAM/2008-205145 [in Rissian].
9. Urminsky, J., Marônek, M., Bárta, J. et al. (2020) Electron Beam Welding of Aluminium Alloy AW2099. Materials Science Forum, 994, 28-35. https://doi.org/10.4028/www.scientific.net/MSF.994.28
10. Ma, J., Pierce, K. (2021) New shielding gas mixture for laser conduction welding of aluminum with a filler wire. Journal of Laser Applications, 33, 042018. https://doi.org/10.2351/7.0000471
11. Cao, X., Wallace, W., Poon, C., Immarigeon, J.-P. (2003). Research and Progress in Laser Welding of Wrought Aluminum Alloys. I. Laser Welding Processes. Materials and Manufacturing Processes, 18, 1-22. https://doi.org/10.1081/AMP-120017586
12. Cai, C., He, S., Chen, H., Zhang, W. (2019) The influences of Ar-He shielding gas mixture on welding characteristics of fiber laser-MIG hybrid welding of aluminum alloy. Optics & Laser Technology, 113, 37-45. https://doi.org/10.1016/j.optlastec.2018.12.011
13. Reisgen, U., Olschok, S., Mavany, M., Jakobs, S. (2011) Laser Beam Submerged Arc Hybrid Welding. Physics Procedia, 12, 179-187. https://doi.org/10.1016/j.phpro.2011.03.023
14. Reisgen, U., Olschok, S., Engels, O. (2020) Visualization of the molten pool of the laser beam submerged arc hybrid welding process. Welding in the World, 64, 721-727. https://doi.org/10.1007/s40194-020-00873-8
15. Shiganov, I., Holopov, A. (2010) Aluminium allow laser welding. Photonics Russia, 3, 6-10 [in Rissian].
16. Mathers, G. (2002) The Welding Aluminium and its Alloys. Woodhead Publishing Series in Welding and Other Joining Technologies, 1st edition, October 8. 978-1855735675
17. Zhu, G., Wang, S., Cheng, W. et al. (2019) Investigation on the Surface Properties of 5A12 Aluminum Alloy after Nd: YAG Laser Cleaning. Coatings, 9(9), 578-593. https://doi.org/10.3390/coatings9090578
18. Khaskin, V.Yu. (2013) Development of laser welding of aluminium alloys at the E.O. Paton electric welding institute (Review). The Paton Welding J., 5, 51-55.
19. Kah, P., Lu, J., Martikainen, J., Suoranta, R. (2013) Remote Laser Welding with High Power Fiber Lasers. Engineering, 05(09), 700-706. https://doi.org/10.4236/eng.2013.59083
20. Powel, J., Ilar, T., Frostevarg, J., Torkamany, M.J. (2015) Weld root instabilities in fiber laser welding. Journal of Laser Applications, 27, S29008-1-S29008-5. https://doi.org/10.2351/1.4906390
21. Skryabinsky, V.V., Nesterenkov, V.M., Mikitchik, A.V. (2022) Electron beam welding of aluminum 1570 alloy and mechanical properties of its joints at cryogenic temperatures. The Paton Welding J., 1, 22-25. https://doi.org/10.37434/as2022.01.03
22. Zhan, X., Yu, H., Feng, X. et al. (2019) A comparative study on laser beam and electron beam welding of 5A06 aluminum alloy. Materials Research Express, 6, 5, 056563. https://doi.org/10.1088/2053-1591/ab0562
23. Coelho, B.N., M.S.F. de Lima, S.M. de Carvalho, A.R. da Costa (2018) A Comparative Study of the Heat Input During Laser Welding of Aeronautical Aluminum Alloy AA6013-T4. J. Aerosp. Technol. Manag., São José dos Campos, 10, e2918. https://doi.org/10.5028/jatm.v10.925
24. Çam, G., Ventzke, V., J.F. dos Santos et al. (1999) Characterisation of electron beam welded aluminium alloys. Science and Technology of Welding & Joining, 4(5), 317-323. https://doi.org/10.1179/136217199101537941
25. Mastanaiah, P., Sharma, A., Reddy, G.M. (2018) Process parameters-weld bead geometry interactions and their influence on mechanical properties: A case of dissimilar aluminium alloy electron beam welds. Defence Technology, 14, 2, 137-150. https://doi.org/10.1016/j.dt.2018.01.003
26. Mercana, E., Ayanb, Y., Kahrama, N. (2020) Investigation on joint properties of AA5754 and AA6013 dissimilar aluminum alloys welded using automatic GMAW Author links open overlay. Engineering Science and Technology, 23, 4, 723-731. https://doi.org/10.1016/j.jestch.2019.11.004
27. El-Batahgy, A.M., Klimova-Korsmik, O., Akhmetov, A., Turichin G. (2021) High-Power Fiber Laser Welding of High-Strength AA7075-T6 Aluminum Alloy Welds for Mechanical Properties Research. Materials (Basel), 14(24), 7498. https://doi.org/10.3390/ma14247498
28. Han, X., Yang, Z., Ma, Y. et al. (2020) Comparative Study of Laser-Arc Hybrid Welding for AA6082-T6 Aluminum Alloy with Two Different Arc Modes. Metals, 10, 407. https://doi.org/10.3390/met10030407
29. Khaskin, V.Yu., Korzhik, V.N., Sydorets, V.N. et al. (2015) Improving the efficiency of hybrid welding of aluminum alloys. The Paton Welding J., 12, 14-18. https://doi.org/10.15407/tpwj2015.12.03
30. Lalvani, H., Mandal, P. (2021) Cold forming of Al-5251 and Al-6082 tailored welded blanks manufactured by laser and electron beam welding. Journal of Manufacturing Processes, 68, Part A, 1615-1636. https://doi.org/10.1016/j.jmapro.2021.06.070
31. Shiganov, I.N., Shakhov, S.V., Kholopov, A.A. (2012) Laser welding of aluminium alloys for aircraft purpose. Inzh. Zh.: Nauka i Innovatsii, 6(6), 34-50. https://doi.org/10.18698/2308-6033-2012-6-224
32. Khaskin, V., Korzhyk, V., Peleshenko, S., Wu, B. (2015) Study the impact of technological scheme of a hybrid laser-arc welding on welds formation. Wschodnioeuropejskie Czasopismo Naukowe (East European Scientific Journal), 2, 141-150.
33. Malikov, A., Orishich, A., Karpov, E. Vitoshkin, I. (2019) Laser welding of aluminium alloys for the aircraft industry. IOP Conference Series: Materials Science and Engineering, 681, 012029, 1-6. https://doi.org/10.1088/1757-899X/681/1/012029
34. Zhao, H., White, D.R., DebRoy, T. (1999) Current issues and problems in laser welding of automotive aluminium alloys. International Materials Reviews, ASM International, 238-266. https://doi.org/10.1179/095066099101528298
35. Cao, X., Wallace, W., Immarigeon, J.-P., Poon, C. (2003) Research and Progress in Laser Welding of Wrought Aluminum Alloys. II. Metallurgical Microstructures, Defects, and Mechanical Properties. Materials and Manufacturing Processes, 18(1), 23-49. https://doi.org/10.1081/AMP-120017587
36. Xiao, R., Zhang, X. (2014) Problems and issues in laser beam welding of aluminum-lithium alloys. Journal of Manufacturing Processes, 16, 166-175. https://doi.org/10.1016/j.jmapro.2013.10.005
37. Loginova, I., Khalil, A., Pozdniakov, A. et al. (2017) Effect of Pulse Laser Welding Parameters and Filler Metal on Microstructure and Mechanical Properties of Al-4.7Mg-0.32Mn- 0.21Sc-0.1Zr Alloy. Metals-Open Access Metallurgy Journal, 7(12), 564-572. https://doi.org/10.3390/met7120564
38. Stange, A.W., Hilmas, D.E., Furman, F.J. (1996) Possible health risks from low level exposure to beryllium. Toxicology, 111(1-3), 213-224. https://doi.org/10.1016/0300-483X(96)03378-1
39. Hill, M., Damkroger, B.K., Dixon, R.D., Robertson, E. (1990) Beryllium weldability. Los Alamos National Laboratory, Materials Weldability Symposium, ASM Materials Week, Detroit, Michigan (USA). Permalink: https://www.researchgate.net/publication/236557474
40. Veness, R., Simmons, G., Dorn, C. (2011) Development of beryllium vacuum chamber technology for the LHC. Proceedings of IPAC2011, San Sebastián, Spain, TUPS024, 1578-1580.
41. Gurevich, S.M. (1990) Reference book on welding of non-ferrous metals. Ed. by V.N. Zamkov. 2nd Ed. Kyiv, Naukova Dumka [in Russian].
42. Hanafee, J.E., Ramos, T.J. (1995) Laser Fabrication of Beryllium Components. 2nd International Energy Agency International Workshop on Beryllium Technology for Fusion, Moran, Wyoming (USA), September 6-8. https://doi.org/10.2172/132761
43. Falkner, G.E., Ramos, T.J., Murchie, J.R. (1982) Laser Welding Beryllium in a Deuterium Atmosphere. Lawrence Livermore National Laboratory Report UCID-19602, Order Number DE83003312, Nov.
44. Manly, W.D., Dombrowski, D.E., Hanafee, J.E. et al. (1995) Report of a Technical Evaluation Panel on the Use of Beryllium for ITER Plasma Facing Material and Blanket Breeder Material. Sandia National Laboratories (USA), SAND95-1693 UC-420.
45. Campbell, R.P., Dixon, R.D., Liby, A.L. (1978) Electron-beam fusion welding of beryllium. Rockwell International (USA), RFP-2621, January 1. https://doi.org/10.2172/5172167
46. Criss, E.M. (2015) Surrogacy of Beryllium Welds and Heat Transfer in Metals: dis. for the degree Doctor of Philosophy (Mechanical Engineering), University of California, San Diego (USA). Permalink: http://escholarship.org/uc/item/8sx939v4
47. Shao Rong Yu, Yi Xia Yan, Zhi Ming Hao et al. (2009) Analysis of Temperature Distribution and its Influencing Factors in Laser Welding of Beryllium Cylindrical Shells. Key Engineering Materials, 419-420, 449-452. https://doi.org/10.4028/www.scientific.net/KEM.419-420.449
48. Komarov, M.A., Guitarsky, L.S. (2015) Welding of beryllium. Welding International, 29, 7, 561-566. https://doi.org/10.1080/09507116.2014.952497
49. Korzhyk, V., Khaskin, V., Grynyuk, A. et al. (2022) Comparison of the features of the formation of joints of aluminum alloy 7075 (Al-Zn-Mg-Cu) by laser, microplasma, and laser-microplasma welding. Eastern-European Journal of Enterprise Technologies, 1(12(115), 38-47. https://doi.org/10.15587/1729-4061.2022.253378
50. Bondarev, A.A., Nesterenkov, V.M. (2011) Electron beam welding of thin-sheet three-dimensional structures of aluminium alloys. The Paton Welding J., 6, 36-39.
51. Narsimhachary, D., Ravi N. Bathe, Padmanabham, G., Basu, A. (2014) Influence of Temperature Profile during Laser Welding of Aluminum Alloy 6061 T6 on Microstructure and Mechanical Properties. Materials and Manufacturing Processes, 29, 948- 953. https://doi.org/10.1080/10426914.2013.872258
52. Kang, M., Lee, K. (2017) A Review of Joining Processes for High Strength 7xxx Series Aluminum Alloys. Journal of Welding and Joining, 35(6), 79-88. https://doi.org/10.5781/JWJ.2017.35.6.12
53. Klochkov, I.N., Nesterenkov, V.M., Berdnikova, E.N., Motrunich, S.I. (2019) Strength and fatigue life of joints of high-strength alloy AA7056-T351, made by electron beam welding. The Paton Welding J., 1, 10-14. https://doi.org/10.15407/tpwj2019.01.03
54. Wang, J.T., Zhang, Y.K., Chen, J.F. et al. (2015) Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints. Materials Science and Engineering. A. Structural Materials: Properties, Microstructure and Processing, 647, 7-14. https://doi.org/10.1016/j.msea.2015.08.084

Advertising in this issue: