Eng
Ukr
Rus
Print

2024 №01 (05) DOI of Article
10.37434/as2024.01.06
2024 №01 (07)

Automatic Welding 2024 #01
Avtomaticheskaya Svarka (Automatic Welding), #1, 2024, pp. 51-59

Thermal spraying of coatings, containing Cr2AlC max-phase (Review)

N.V. Vihilianska1, D.V. Filonenko1, A.O. Yushchenko1, C. Senderowski2, J.-C. Grivel3

1E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2Warsaw Polytechnic University. 1 Polytechnic Sq., 00-661, Warsaw, Poland
3Technical University of Denmark. Anker Engelunds Vej, Building 301, Kongens Lyngby, Denmark, 2800.

A review of research woks is presented, devoted to formation of coatings, containing Cr2AlC МАХ-phase, under the processes of thermal spraying. The main methods for producing coatings containing Cr2AlC МАХ-phase is plasma, high-velocity oxygen fuel and cold gas-dynamic spraying. As spraying materials, both powders with synthesized Cr2AlC МАХ-phase, obtained by the sintering method as well as powders of the mechanical mixture of initial components are used. To preserve the МАХ-phase in a powder and prevent the oxidation of particles in the process of spraying, high-velocity spraying methods (high-velocity plasma, high-velocity oxygen fuel and cold gas-dynamic) are used. The velocity of particles flight during spraying by these methods is 500…900 m/s. Therefore, in these cases coatings are formed, the phase composition of which corresponds to the phase composition of sprayed powders, and the content of Cr2AlC phase in such coatings amounts to 79…98 wt.%. In the case of using mechanical mixture of components for the course of the synthesis of the МАХ phase, the plasma method is used in the spray process, resulting in the formation of coatings with the contents of the МАХ phase of up to 42 wt. %. Studies of phase transformations in powder particles during spraying, decomposition mechanisms and/or the formation of the МАХ phase, the effects of spraying parameters on the structure and properties of coatings are shown. The prospect of further practical use of thermal coatings, containing Cr2AlC МАХ-phase is described, which mainly consists in using them at elevated temperatures, in particular, in the structures of heat protecting coatings. 39 Ref., 5 Tabl., 8 Fig.
Keywords: Cr2AlC MAX-phase, thermal coatings, microstructure, mechanical properties, heat protection properties


Received: 16.11.2023
Received in revised form: 23.11.2023
Accepted: 14.12.2023

References

1. Sokol, M., Natu, V., Kota, S., Barsoum, M.W. (2019) On the chemical diversity of the MAX phases. Trends in Chemistry, 1(2), 210-223. https://doi.org/10.1016/j.trechm.2019.02.016
2. Gonzalez‐Julian, J. (2021). Processing of MAX phases: From synthesis to applications. Journal of the American Ceramic Society, 104(2), 659-690. https://doi.org/10.1111/jace.17544
3. Lin, Z.J., Li, M.S., Wang, J.Y., Zhou, Y.C. (2007) High-temperature oxidation and hot corrosion of Cr2AlC. Acta Materialia, 55(18), 6182-6191. https://doi.org/10.1016/j.actamat.2007.07.024
4. Barsoum, M.W., Radovic, M. (2011) Elastic and mechanical properties of the MAX phases. Annual review of materials research, 41, 195-227. https://doi.org/10.1146/annurev-matsci-062910-100448
5. Tian, W., Wang, P., Zhang, G. et al. (2006) Synthesis and thermal and electrical properties of bulk Cr2AlC. Scripta Materialia, 54(5), 841-846. https://doi.org/10.1016/j.scriptamat.2005.11.009
. Tian, W.B., Wang, P.L., Zhang, G.J. et al. (2007) Mechanical properties of Cr2AlC ceramics. Journal of the American Ceramic Society, 90(5), 1663-1666. https://doi.org/10.1111/j.1551-2916.2007.01634.x
7. Li, S.B., Yu, W B., Zhai, H.X. et al. (2011) Mechanical properties of low temperature synthesized dense and fine-grained Cr2AlC ceramics. Journal of the European Ceramic Society, 31(1-2), 217-224. https://doi.org/10.1016/j.jeurceramsoc.2010.08.014
8. Tian, W., Wang, P., Zhang, G. et al. (2007) Effect of composition and processing on phase assembly and mechanical property of Cr2AlC ceramics. Materials Science and Engineering: A, 454, 132-138. https://doi.org/10.1016/j.msea.2006.11.032
9. Ying, G., He, X., Li, M. et al. (2011) Synthesis and mechanical properties of high-purity Cr2AlC ceramic. Materials Science and Engineering: A, 528(6), 2635-2640. https://doi.org/10.1016/j.msea.2010.12.039
10. Manoun, B., Gulve, R.P., Saxena, S.K. et al. (2006) Compression behavior of M2AlC (M = Ti, V, Cr, Nb, and Ta) phases to above 50 GPa. Physical Review B, 73(2), 024110. https://doi.org/10.1103/PhysRevB.73.024110
11. Tian, W., Sun, Z., Du, Y., Hashimoto, H. (2009) Mechanical properties of pulse discharge sintered Cr2AlC at 25-1000 ºC. Materials Letters, 63(8), 670-672. https://doi.org/10.1016/j.matlet.2008.12.024
12. Panigrahi, B.B., Chu, M.C., Kim, Y.I. et al. (2010) Reaction synthesis and pressureless sintering of Cr2AlC powder. Journal of the American Ceramic Society, 93(6), 1530-1533. https://doi.org/10.1111/j.1551-2916.2009.03560.x
13. Xiao, L.O., Li, S.B., Song, G., Sloof, W.G. (2011) Synthesis and thermal stability of Cr2AlC. Journal of the European Ceramic Society, 31(8), 1497-1502. https://doi.org/10.1016/j.jeurceramsoc.2011.01.009
14. Tian, W., Sun, Z., Du, Y., Hashimoto, H. (2008) Synthesis reactions of Cr2AlC from Cr-Al4C3-C by pulse discharge sintering. Materials Letters, 62(23), 3852-3855. https://doi.org/10.1016/j.matlet.2008.05.001
15. Yeh, C.L., Kuo, C.W. (2011) Effects of Al and Al4C3 contents on combustion synthesis of Cr2AlC from Cr2O3-Al-Al4C3 powder compacts. Journal of alloys and compounds, 509(3), 651-655. https://doi.org/10.1016/j.jallcom.2010.09.169
16. Duan, X., Shen, L., Jia, D. et al. (2015) Synthesis of high-purity, isotropic or textured Cr2AlC bulk ceramics by spark plasma sintering of pressure-less sintered powders. Journal of the European Ceramic Society, 35(5), 1393-1400. https://doi.org/10.1016/j.jeurceramsoc.2014.11.008
17. Yeh, C.L., Yang, W.J. (2013) Formation of MAX solid solutions (Ti, V)2AlC and (Cr, V)2AlC with Al2O3 addition by SHS involving aluminothermic reduction. Ceramics International, 39(7), 7537-7544. https://doi.org/10.1016/j.ceramint.2013.03.005
18. Yembadi, R., Panigrahi, B.B. (2017) Thermodynamic Assessments and mechanically activated synthesis of ultrafine Cr2AlC MAX phase powders. Advanced Powder Technology, 28(3), 732-739. https://doi.org/10.1016/j.apt.2016.11.020
19. Li, J.J., Qian, Y.H., Niu, D. et al. (2012) Phase formation and microstructure evolution of arc ion deposited Cr2AlC coating after heat treatment. Applied surface science, 263, 457-464. https://doi.org/10.1016/j.apsusc.2012.09.082
20. Mockute, A., Persson, P.O., Magnus, F. et al. (2014) Synthesis and characterization of arc deposited magnetic (Cr, Mn)2AlC MAX phase films. Physica status solidi (RRL)-Rapid Research Letters, 8(5), 420-423. https://doi.org/10.1002/pssr.201409087
21. Wang, Z., Ma, G., Liu, L. et al. (2020) High-performance Cr2AlC MAX phase coatings: Oxidation mechanisms in the 900-1100 ºC temperature range. Corrosion Science, 167, 108492. https://doi.org/10.1016/j.corsci.2020.108492
22. Stevens, M., Pazniak, H., Jemiola, A. et al. (2021) Pulsed laser deposition of epitaxial Cr2AlC MAX phase thin films on MgO (111) and Al2O3 (0001). Materials Research Letters, 9(8), 343-349. https://doi.org/10.1080/21663831.2021.1920510
23. Lange, C., Hopfeld, M., Wilke, M. et al. (2012) Pulsed laser deposition from a pre‐synthesized Cr2AlC MAX phase target with and without ion‐beam assistance. Physica status solidi (A), 209(3), 545-552. https://doi.org/10.1002/pssa.201127537
24. Li, Y., Zhao, G., Qian, Y. et al. (2018) Deposition of phasepure Cr2AlC coating by DC magnetron sputtering and post annealing using Cr-Al-C targets with controlled elemental composition but different phase compositions. Journal of materials science & technology, 34(3), 466-471. https://doi.org/10.1016/j.jmst.2017.01.029
25. Qureshi, M.W., Ma, X., Tang, G. et al. (2021) Fabrication and Mechanical Properties of Cr2AlC MAX Phase Coatings on TiBw/Ti6Al4V Composite Prepared by HiPIMS. Materials, 14(4), 826. https://doi.org/10.3390/ma14040826
26. Naveed, M., Obrosov, A., Zak, A. et al. (2016) Sputtering power effects on growth and mechanical properties of Cr2AlC MAX phase coatings. Metals, 6(11), 265. https://doi.org/10.3390/met6110265
27. Liu, J., Zuo, X., Wang, Z. et al. (2018) Fabrication and mechanical properties of high purity of Cr2AlC coatings by adjustable Al contents. Journal of Alloys and Compounds, 753, 11-17. https://doi.org/10.1016/j.jallcom.2018.04.100
28. Gonzalez‐Julian, J., Mauer, G., Sebold, D. et al. (2020) Cr2AlC MAX phase as bond coat for thermal barrier coatings: Processing, testing under thermal gradient loading, and future challenges. Journal of the American Ceramic Society, 103(4), 2362-2375. https://doi.org/10.1111/jace.16935
29. Zhang, F., Yan, S., Li, C. et al. (2019) Synthesis and characterization of MAX phase Cr2AlC based composite coatings by plasma spraying and post annealing. Journal of the European Ceramic Society, 39(16), 5132-5139. https://doi.org/10.1016/j.jeurceramsoc.2019.08.039
30. Zhang, F., Yu, G., Yan, S. et al. (2023) Characterization and reaction mechanism of in-situ micro-laminated Cr2AlC coatings by plasma spraying Cr3C2/Al/Cr powder mixtures. Surface and Coatings Technology, 456, 129271. https://doi.org/10.1016/j.surfcoat.2023.129271
31. Davis, D., Srivastava, M., Malathi, M. et al. (2018) Effect of Cr2AlC MAX phase addition on strengthening of Ni-Mo-Al alloy coating on piston ring: Tribological and twist-fatigue life assessment. Applied Surface Science, 449, 295-303. https://doi.org/10.1016/j.apsusc.2018.01.146
32. Davis, D., Singh, S., Chakradhar, R.P.S., Srivastava, M. (2020). Tribo-Mechanical Properties of HVOF-Sprayed NiMoAl-Cr2AlC Composite Coatings. Journal of Thermal Spray Technology, 29, 1763-1783. https://doi.org/10.1007/s11666-020-01069-8
33. Chen, Y., Chu, M., Wang, L. et al. (2012) Microstructure and performance of Cr(2)AlC coatings deposited by HVOF spraying. Chinese Journal of Rare Metals, 36(4), 568-573. 10.3969/j.issn.0258-7076.2012.04.011.
34. Elsenberg, A., Busato, M., Gärtner, F. et al. (2021) Influence of MAX-phase deformability on coating formation by cold spraying. Journal of Thermal Spray Technology, 30, 617-642. https://doi.org/10.1007/s11666-020-01110-w
35. Go, T., Sohn, Y.J., Mauer, G. et al. (2019) Cold spray deposition of Cr2AlC MAX phase for coatings and bond-coat layers. Journal of the European Ceramic Society, 39(4), 860-867. https://doi.org/10.1016/j.jeurceramsoc.2018.11.035
36. Zhang, Z., Lim, S.H., Chai, J. et al. (2017) Plasma spray of Ti2AlC MAX phase powders: Effects of process parameters on coatings' properties. Surface and Coatings Technology, 325, 429-436. https://doi.org/10.1016/j.surfcoat.2017.07.006
37. Zhang, Z., Lai, D.M.Y., Lim, S.H. et al. (2018) Isothermal oxidation of the Ti2AlC MAX phase coatings deposited by kerosene-fuelled HVOF spray. Corrosion Science, 138, 266-274. https://doi.org/10.1016/j.corsci.2018.04.022
38. Gutzmann, H., Gärtner, F., Höche, D. et al. (2013) Cold spraying of Ti2AlC MAX-phase coatings. Journal of thermal spray technology, 22, 406-412. https://doi.org/10.1007/s11666-012-9843-1
39. Rajkumar, Y., Rahul, B.M., Ananth Akash, P., Panigrahi, B.B. (2017) Nonisothermal sintering of Cr2AlC powder. International Journal of Applied Ceramic Technology, 14(1), 63-67. https://doi.org/10.1111/ijac.12617

Advertising in this issue: