Eng
Ukr
Rus
Print
2025 №03 (08) DOI of Article
10.37434/as2025.03.01
2025 №03 (02)


"Avtomatychne Zvaryuvannya" (Automatic Welding), #3, 2024, pp. 3-9

Model of the anode layer of an electric arc with an evaporating anode

I.V. Krivtsun1, A.I. Momot1,2, I.B. Denysenko1,3

1E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: momot.andriy@gmail.com
2Taras Shevchenko National University of Kyiv. 64/13 Volodymyrska Str., 01601, Kyiv, Ukraine.
3V.N. Karazin Kharkiv National University. 4 Svobody Sq., 61022, Kharkiv, Ukraine. E-mail: idenysenko@yahoo.com

A mathematical model of the anode layer of an arc with an evaporating anode in the convective mode is proposed. A system of differential equations is formulated to describe the spatial distributions of ion and atom densities, electron temperature, and heavy particle (atoms and ions) temperature of the plasma in the anode layer. To determine the corresponding boundary conditions, an approach is proposed for calculating plasma parameters at the boundaries of the anode layer with the gas-dynamic region (arc column) and with the space charge layer near the anode surface. This approach allows finding the concentrations and temperatures of plasma particles, its velocity and pressure at the boundaries of the anode layer both in the convective mode of anode metal evaporation and in the diffusive mode of evaporation (taking into account the diffusion velocity of metal vapor). Calculations were performed for three different anode metals: Fe, Cu, Al. The anode surface temperature at which the transition from diffusive to convective evaporation mode occurs was determined. 17 Ref., 1 Tabl., 4 Fig.
Keywords: anode layer, electric arc, mathematical model, evaporating anode, metal vapor, convective evaporation, diffusive evaporation


Received: 12.05.2025
Received in revised form: 20.05.2025
Accepted: 26.05.2025

References

1. Steen, W.M., Eboo, M. (1979) Arc augmented laser welding. Metal Construction, 11, 332-335.
2. Seyffarth, P., Krivtsun, I.V. (2002) Laser-arc processes and their applications in welding and material treatment. Welding and Allied Processes. London, Taylor and Francis Books. DOI: https://doi.org/10.1201/9781482264821
3. Krivtsun, I.V., Krikent, I.V., Demchenko, V.F., Reisgen, U., Zabirov, A.F., Mokrov, O.A. (2015) Interaction of CO2-laser radiation beam with electric arc plasma in hybrid (laser+TIG) welding. The Paton Welding J., 3, 6–15. DOI: https://doi.org/10.15407/tpwj2015.04.01
4. Reisgen, U., Krivtsun, I., Gerhards, B., Zabirov, A. (2016) Experimental research of hybrid welding processes in combination of gas tungsten arc with CO2- or Yb: YAG-laser beam. J. of Laser Applications, 28, 022402. DOI: https://doi.org/10.2351/1.4944096
5. Krivtsun, I., Reisgen, U., Semenov, O., Zabirov, A. (2016) Modeling of weld pool phenomena in tungsten inert gas, CO2-laser and hybrid (TIG+ CO2-laser) welding. J. of Laser Applications, 28, 022406. DOI: https://doi.org/10.2351/1.4943994
6. Krivtsun, I.V., Momot, A.I., Denysenko, I.B., Mokrov, O., Sharma, R., Reisgen, U. (2024) Transport properties and kinetic coefficients of copper thermal plasmas. Physics of Plasmas, 31, 083505. DOI: https://doi.org/10.1063/5.0216753
7. Zhdanov, V.M. (2002) Transport processes in multicomponent plasma. CRC Press.
8. Knight, C.J. (1979) Theoretical modeling of rapid surface vaporization with back pressure. AIAA J., 17, 519–523. DOI: https://doi.org/10.2514/3.61164
9. Almeida, N.A., Benilov, M.S., Naidis, G.V. (2008) Unified modelling of near-cathode plasma layers in high-pressure arc discharges. J. Phys. D: Appl. Phys. 41, 245201. DOI: https://doi.org/10.1088/0022-3727/41/24/245201
10. Frezzotti, A. (2007) A numerical investigation of the steady evaporation of a polyatomic gas. European J. of Mechanics-B/Fluids, 26, 93–104. DOI: https://doi.org/10.1016/j.euromechflu.2006.03.007
11. Bird, E., Liang, Z. (2019) Transport phenomena in the Knudsen layer near an evaporating surface. Physical Review E, 100, 043108. DOI: https://doi.org/10.1103/Phys-RevE.100.043108
12. Gao, S., Momot, A., Krivtsun, I., Antoniv, D., Momot, O. (2025) Interaction between a spherical particle and atmospheric pressure currentless argon plasma. East European J. of Physics, 1, 388–395. DOI: https://doi.org/10.26565/2312-4334-2025-1-48
13. Godyak, V.A., Sternberg, N. (2002) Smooth plasma-sheath transition in a hydrodynamic model. IEEE Transact. on Plasma Sci., 18, 159–168. DOI: https://doi.org/10.1109/27.45519
14. Zhang, Y., Evans, J. R., Yang, S. (2011) Corrected values for boiling points and enthalpies of vaporization of elements in handbooks. J. of Chemical & Engineering Data, 56, 328–337. DOI: https://doi.org/10.1021/je1011086
15. Kramida, A., Ralchenko, Yu., Reader, J., NIST ASD Team (2024) NIST Atomic Spectra Database (ver. 5.12) https://physics.nist.gov/asd National Institute of Standards and Technology, Gaithersburg, MD. DOI: https://doi.org/10.18434/T4W30F
16. Loock, H.P., Beaty, L.M., Simard, B. (1999) Reassessment of the first ionization potentials of copper, silver, and gold. Physical Review A, 59, 873. DOI: https://doi.org/10.1103/PhysRevA.59.873
17. Krikent, I.V., Krivtsun, I.V., Demchenko, V.F. (2014) Simulation of electric arc with refractory cathode and evaporating anode. The Paton Welding J., 9, 17–24. DOI: https://doi.org/10.15407/tpwj2014.09.02