"Avtomatychne Zvaryuvannya" (Automatic Welding), #3, 2024, pp. 3-9
Model of the anode layer of an electric arc with an evaporating anode
I.V. Krivtsun1, A.I. Momot1,2, I.B. Denysenko1,3
1E.O. Paton Electric Welding Institute of the NAS of Ukraine
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine.
E-mail: momot.andriy@gmail.com
2Taras Shevchenko National University of Kyiv. 64/13 Volodymyrska Str., 01601, Kyiv, Ukraine.
3V.N. Karazin Kharkiv National University. 4 Svobody Sq., 61022, Kharkiv, Ukraine. E-mail: idenysenko@yahoo.com
A mathematical model of the anode layer of an arc with an evaporating anode in the convective mode is proposed. A system of
differential equations is formulated to describe the spatial distributions of ion and atom densities, electron temperature, and heavy
particle (atoms and ions) temperature of the plasma in the anode layer. To determine the corresponding boundary conditions,
an approach is proposed for calculating plasma parameters at the boundaries of the anode layer with the gas-dynamic region
(arc column) and with the space charge layer near the anode surface. This approach allows finding the concentrations and
temperatures of plasma particles, its velocity and pressure at the boundaries of the anode layer both in the convective mode of
anode metal evaporation and in the diffusive mode of evaporation (taking into account the diffusion velocity of metal vapor).
Calculations were performed for three different anode metals: Fe, Cu, Al. The anode surface temperature at which the transition
from diffusive to convective evaporation mode occurs was determined. 17 Ref., 1 Tabl., 4 Fig.
Keywords: anode layer, electric arc, mathematical model, evaporating anode, metal vapor, convective evaporation, diffusive evaporation
Received: 12.05.2025
Received in revised form: 20.05.2025
Accepted: 26.05.2025
References
1. Steen, W.M., Eboo, M. (1979) Arc augmented laser welding.
Metal Construction, 11, 332-335.
2. Seyffarth, P., Krivtsun, I.V. (2002) Laser-arc processes and
their applications in welding and material treatment. Welding
and Allied Processes. London, Taylor and Francis Books.
DOI: https://doi.org/10.1201/9781482264821
3. Krivtsun, I.V., Krikent, I.V., Demchenko, V.F., Reisgen, U.,
Zabirov, A.F., Mokrov, O.A. (2015) Interaction of CO2-laser
radiation beam with electric arc plasma in hybrid (laser+TIG)
welding. The Paton Welding J., 3, 6–15. DOI: https://doi.org/10.15407/tpwj2015.04.01
4. Reisgen, U., Krivtsun, I., Gerhards, B., Zabirov, A. (2016) Experimental
research of hybrid welding processes in combination of
gas tungsten arc with CO2- or Yb: YAG-laser beam. J. of Laser Applications,
28, 022402. DOI: https://doi.org/10.2351/1.4944096
5. Krivtsun, I., Reisgen, U., Semenov, O., Zabirov, A.
(2016) Modeling of weld pool phenomena in tungsten inert
gas, CO2-laser and hybrid (TIG+ CO2-laser) welding.
J. of Laser Applications, 28, 022406. DOI: https://doi.org/10.2351/1.4943994
6. Krivtsun, I.V., Momot, A.I., Denysenko, I.B., Mokrov, O.,
Sharma, R., Reisgen, U. (2024) Transport properties and kinetic
coefficients of copper thermal plasmas. Physics of Plasmas,
31, 083505. DOI: https://doi.org/10.1063/5.0216753
7. Zhdanov, V.M. (2002) Transport processes in multicomponent
plasma. CRC Press.
8. Knight, C.J. (1979) Theoretical modeling of rapid surface vaporization
with back pressure. AIAA J., 17, 519–523. DOI:
https://doi.org/10.2514/3.61164
9. Almeida, N.A., Benilov, M.S., Naidis, G.V. (2008) Unified
modelling of near-cathode plasma layers in high-pressure arc
discharges. J. Phys. D: Appl. Phys. 41, 245201. DOI: https://doi.org/10.1088/0022-3727/41/24/245201
10. Frezzotti, A. (2007) A numerical investigation of the steady
evaporation of a polyatomic gas. European J. of Mechanics-B/Fluids, 26, 93–104. DOI: https://doi.org/10.1016/j.euromechflu.2006.03.007
11. Bird, E., Liang, Z. (2019) Transport phenomena in the
Knudsen layer near an evaporating surface. Physical Review
E, 100, 043108. DOI: https://doi.org/10.1103/Phys-RevE.100.043108
12. Gao, S., Momot, A., Krivtsun, I., Antoniv, D., Momot, O.
(2025) Interaction between a spherical particle and atmospheric
pressure currentless argon plasma. East European J.
of Physics, 1, 388–395. DOI: https://doi.org/10.26565/2312-4334-2025-1-48
13. Godyak, V.A., Sternberg, N. (2002) Smooth plasma-sheath
transition in a hydrodynamic model. IEEE Transact. on Plasma
Sci., 18, 159–168. DOI: https://doi.org/10.1109/27.45519
14. Zhang, Y., Evans, J. R., Yang, S. (2011) Corrected values for
boiling points and enthalpies of vaporization of elements in
handbooks. J. of Chemical & Engineering Data, 56, 328–337. DOI: https://doi.org/10.1021/je1011086
15. Kramida, A., Ralchenko, Yu., Reader, J., NIST ASD Team
(2024) NIST Atomic Spectra Database (ver. 5.12) https://physics.nist.gov/asd National Institute of Standards and Technology,
Gaithersburg, MD. DOI: https://doi.org/10.18434/T4W30F
16. Loock, H.P., Beaty, L.M., Simard, B. (1999) Reassessment
of the first ionization potentials of copper, silver, and gold.
Physical Review A, 59, 873. DOI: https://doi.org/10.1103/PhysRevA.59.873
17. Krikent, I.V., Krivtsun, I.V., Demchenko, V.F. (2014) Simulation
of electric arc with refractory cathode and evaporating
anode. The Paton Welding J., 9, 17–24. DOI: https://doi.org/10.15407/tpwj2014.09.02