"Avtomatychne Zvaryuvannya" (Automatic Welding), #4, 2024, pp. 11-17
Narrow gap welding of titanium alloy PT3V with a control magnetic field
S.V. Akhonin, V.Yu. Bilous, R.V. Selin, I.K. Petrichenko, L.M. Radchenko, S.B. Rukhansky
E.O. Paton Electric Welding Institute of the NAS of Ukraine
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine.
E-mail: belousvy@gmail.com
Tungsten inert gas (TIG) welding of titanium alloys in a narrow gap is a cost-effective and efficient method for joining thick
titanium alloy structures. The technology of narrow-gap welding of titanium alloys with a magnetically-controlled arc enables
a wide range of welding parameter adjustments. This study considers the application of narrow-gap welding with a tungsten
electrode and a control magnetic field for producing joints of titanium alloy PT3V plates with thicknesses of 45 mm and 64
mm. The strength of the welded joints of PT3V titanium alloy produced by narrow-gap welding with a control magnetic field
reaches 636 MPa, which is 85 % of the base metal strength, and it is comparable to the properties of welded joints made using
the conventional gas tungsten arc welding technology. Application of the obtained results allowed welding joints of titanium
alloys with variable thicknesses ranging from 45 to 65 mm while maintaining the same number of passes. 18 Ref., 3 Tabl., 9 Fig.
Keywords: narrow-gap welding, titanium, titanium alloy, TIG welding, tungsten electrode, control magnetic field, heat input,
structure, microstructure, mechanical properties, metallography
Received: 25.02.2025
Received in revised form: 04.04.2025
Accepted: 16.07.2025
References
1. Hori, K., Haneda, M. (1999) Narrow gap arc welding. J. of J.W.S, 3, 41-62.
2. Dak, G., Khanna, N., Pandey, C. (2023) Study on narrow
gap welding of martensitic grade P92 and austenitic grade
AISI 304L SS steel for ultra‑supercritical power plant
application. Archiv.Civ.Mech.Eng., 23, 14. DOI: https://doi.org/10.1007/s43452-022-00540-3
3. Luo, Y., Zhang, Z.L., Zhou, C.F. et al. (2017) Effect of
narrow groove MAG welding oscillation parameters on weld
formation. J. Hebei Univ. Sci. Technol., 38(1), 7–12. DOI:
https://doi.org/10.7535/hbkd.2017yx01002
4. Akhonin, S.V., Belous, V.Yu., Romanyuk, V.S., Stesin, V.V.,
Veliky, S.I., Semenenko, A.V., Polishchuk, A.K. (2010)
Narrow-gap welding of up to 110 mm thick high-strength
titanium alloys. The Paton Welding J., 5, 34–37.
5. Jae-Ho Jun, Sung-Ryul Kim, Sang-Myung Cho (2016)
A study on productivity improvement in narrow gap TIG
welding. J. of Welding and Joining, 34(1), 68–74. DOI:
https://doi.org/10.5781/JWJ.2016.34.1.68
6. Nguyen, D.H. (2014) Research on droplet transfer and welding
process of oscillation arc narrow gap GMAW. Master’s Thesis,
Harbin Institute of Technology, Harbin, China.
7. Sun, Qing Jie, Hai Feng Hu, Xin Yuan, Ji Cai Feng (2011)
Research status and development trend of narrow-gap TIG
welding. Advanced Materials Research, 308, 1170–1176. DOI:
https://doi.org/10.4028/www.scientific.net/AMR.308-310.1170
8. Dong, Z., Tian, Y., Zhang, L. et al. (2024) Research status
of high efficiency deep penetration welding of mediumthick
plate titanium alloy: a review. Defence Technology,
45, 178–202. DOI: https://doi.org/10.1016/j.dt.2024.08.004
9. Fang, D.S. (2017) Study on the characteristics of three-wire
indirect arc and its thick-wall narrow gap welding process
under gas protection. Ph.D. Thesis, Dalian University of
Technology, Dalian, China.
10. Belous, V.Yu., Akhonin, S.V. (2011) Formation of narrowgap
welded joints on titanium using the controlling magnetic
field. The Paton Welding J., 4, 19–22.
11. Shoichi, M., Yukio, M., Koki, T. et al. (2013) Study on
the application for electromagnetic controlled molten pool
welding process in overhead and flat position welding. Sci.
Technol. Weld. Join., 18, 38–44. DOI: https://doi.org/10.1179/1362171812Y.0000000070
12. Ding, L., Qin, B., Ge, K. et al. (2023) Microstructures and
mechanical properties of thick Ti–6Al–3Nb–2Zr–1Mo joint
by magnetron-controlled narrow gap TIG welding. Metals
and Materials International, 29(8), 2304–2315. DOI: http://dx.doi.org/10.1007/s12540-022-01367-6
13. Wang, J., Sun, Q., Feng, J. et al. (2017) Characteristics of
welding and arc pressure in TIG narrow gap welding using
novel magnetic arc oscillation. The International J. of
Advanced Manufacturing Technology, 90, 413–420. DOI:
https://doi.org/10.1007/s00170-016-9407-5
14. Wan, L., Huang, Y., Lv, S. et al. (2016) Narrow-gap tungsten
inert gas welding of 78-mm-thick Ti–6Al–4V alloy. Materials
Science and Technology, 32(15), 1545–1552. DOI: https://doi.org/10.1080/02670836.2015.1131941
15. Fang, N., Guo, E., Huang, R. et al. (2021) Effect of welding
heat input on microstructure and properties of TC4 titanium
alloy ultra-narrow gap welded joint by laser welding with
filler wire. Materials Research Express, 8(1), 016511. DOI:
http://dx.doi.org/10.1088/2053-1591/abd4b3
16. Xinyu Bao Yonglin Ma, Shuqing Xing, Yongzhen Liu,
Weiwei Shi (2022) Effects of pulsed magnetic field melt
treatment on grain refinement of Al–Si–Mg–Cu–Ni alloy
direct-chill casting billet. Metals, 12(7), 1080. DOI: https://doi.org/10.3390/met12071080
17. Ахонін С.В., Білоус В.Ю., Селін Р.В. та ін. (2023) TIG
зварювання у вузький зазор сталі 20 підвищеної товщи-
ни. Автоматичне зварювання, 6, 21–26. DOI: https://doi.org/10.37434/as2023.06.04
18. Yujun Hu, Hongjin Zhao, Xuede Yu et al. (2022) Research
progress of magnetic field regulated mechanical property of
solid metal materials. Metals, 12, 1988. DOI: https://doi.org/10.3390/met12111988
Advertising in this issue: