"Avtomatychne Zvaryuvannya" (Automatic Welding), #5, 2024, pp. 25-30
Use of the hough transformation method for the metallographic studies of ferritic-bainitic steels microstructure
V.V. Holovko1, O.O. Shtofel1,2, D.Yu. Korolenko1
1E.O. Paton Electric Welding Institute of the NAS of Ukraine
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine.
E-mail: v_golovko@ukr.net
2National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute».
37 Beresteysky Ave., 03056, Kyiv, Ukraine.
E-mail: o.shtof@gmail.com
High-strength low-alloy steels are a promising material for the manufacture of welded metal structures, but their widespread use
is hampered by their increased sensitivity to defects that arise during the welding process. Therefore, a fundamental aspect of
developing the technology for welding these steels is understanding how the properties of the metal change during the welding
process and identifying the main microstructural characteristics that explain these changes. Research on high-strength ferritic-
bainitic steels, which concerns the microstructural characteristics and mechanical properties, is aimed at determining the total
angle of structural grains disorientation, using the electron backscatter diffraction (EBSD) method, which can be implemented
on electron microscopes, and requires special software installation. The metallographic analysis method using the Hough transformation,
which can be implemented on optical microscopes and does not require special software, should be considered as an
alternative to the EBSD method. 24 Ref., 5 Fig.
Keywords: high-strength low-alloy steel, welding, microstructure, metallographic analysis, grain boundaries, structural grains
disorientation, Hough transformation
Received: 21.02.2025
Received in revised form: 16.07.2025
Accepted: 12.09.2025
References
1. Hall, E.O. (1951) The deformation and ageing of mild steel:
III Discussion of results. Proc. Phys. Soc. B, 64(9), 747–753.
DOI: http://doi.org/10.1088/0370-1301/64/9/303
2. Petch, N.J. (1953) The cleavage strength of polycrystals. J.
Iron Steel Inst., 174, 25–28.
3. Chapetti, M., Miyata, H., Tagawa, T. et al. (2004) Fatigue
strength of ultra-fine grained steels. Mater. Sci. Eng. A, 381,
331–336. DOI: https://doi.org/10.1016/j.msea.2004.04.055
4. Hansen, N. (2004) Hall-Petch relation and boundary
strengthening. Scr. Mater., 51, 801–806. DOI: https://doi.org/10.1016/j.scriptamat.2004.06.002
5. Yang, X.L., Xu, Y.B., Tan, X.D., Wu, D. (2014) Influences of
crystallography and delamination on anisotropy of Charpy impact
toughness in API X100 pipeline steel. Mater. Sci. Eng. A,
607, 53–62. DOI: https://doi.org/10.1016/j.msea.2014.03.121
6. Joo, M.S., Suh, D.-W., Bae, J.H., Bhadeshia, H.K.D.H.
(2012) Toughness anisotropy in X70 and X80 pipeline steels.
Mater. Sci. Eng. A, 556, 601–606. DOI: http://dx.doi.org/10.1179/1743284713Y.0000000371
7. Jabr, H.M.A., Speer, J.G., Matlock, D.K. et al. (2013) Anisotropy
of mechanical properties of API X70 spiral welded pipe
steels. Mater. Sci. Forum, 753, 538–541. DOI: http://dx.doi.org/10.4028/www.scientific.net/MSF.753.538
8. Sanchez, N., Petrov, R., Bae, J.H., Kim, K. (2010) Texture
dependent mechanical anisotropy of X80 pipeline steel. Adv.
Eng. Mater., 12, 973–980. DOI: http://dx.doi.org/10.1002/adem.201000065
9. Cheng, S., Zhang, X., Zhang, J. et al. (2016) Effect of start
cooling temperature on microstructure and properties of X80
pipeline steel. Mater. Sci. Eng. A, 666, 156–164. DOI: https://doi.org/10.1016/j.msea.2016.04.066
10. Herbig, M., Raabe, D., Li, Y.J. et al. (2014) Atomic-scale
quantification of grain boundary segregation in nanocrystalline
material. Physical Review Letters, 112, 126103. DOI:
https://doi.org/10.1103/PhysRevLett.112.126103
11. Duan, Q., Yan, J., Zhu, G.H., Cai, Q.W. (2013) Effects of
grain size and misorientation on anisotropy of X80 pipeline
steel. Hot Working Tech., 24, 107–109. https://caod.oriprobe.com/articles/41006381/Effects_of_Grain_Size_and_Misorientation_on_Anisot.htm
12. Masoumi, M., Silva, C.C., Abreu, H.F.G.D. (2018) Effect of
rolling in the recrystallization temperature region associated
with a post-heat treatment on the microstructure, crystal orientation,
and mechanical properties of API 5L X70 pipeline
steel. J. Mater. Eng. Perfor., 27, 1694–1705. DOI: http://dx.doi.org/10.1590/1980-5373-mr-2016-0651
13. Deng, C.M., Li, Z.D., Sun, X.J., Yong, Q.L. (2014) Influence
mechanism of high angle boundary on propagation of cleavage
cracks in low martensite steel. Mater. Mech. Eng., 38, 20–24.
14. Shen, J.C., Luo, Z.J., Yang, C.F., Zhang, Y.Q. (2014) «Effective
grain size» affecting low temperature toughness in lath
structure of HSLA steel. J. Iron Steel Res. Int., 26(7), 70–76.
15. Hussein, A., Kim, B., Verbeken, K., Depover, T. (2024)
The effect of grain boundary misorientation on hydrogen
flux using a phase-field based diffusion and trapping model.
Advanced Engineering Materials, 26(22), 2401561. DOI:
https://doi.org/10.1002/adem.202401561
16. Raabe, D., Herbig, M., Sandlöbes, S. et al. (2014) Grain
boundary segregation engineering in metallic alloys: A pathway
to the design of interfaces. Current Opinion in Solid
State and Materials Science, 18, 253–261. DOI: https://doi.org/10.1016/j.cossms.2014.06.002
17. Stojanovic, N., Glisovic, J., Abdullah, O.I. et al. (2022)
Particle formation due to brake wear, influence on the people
health and measures for their reduction: a review. Environ
Sci. Pollut Res., 29, 9606–9625. DOI: https://doi.org/10.1007/s11356-021-17907-3
18. Vincentis, N.S., Roatta, A., Bolmaro, R.E., Signorelli, J.W.
(2019) EBSD analysis of orientation gradients developed near
grain boundaries. Materials Research, 22(1), e20180412.
DOI: https://doi.org/10.1590/1980-5373-MR-2018-0412
19. Pauli, L., Heikki, R. (2022) EBSD characterisation of grain
size distribution and grain sub-structures for ferritic steel
weld metals. Welding in the World, 66, 363–377. DOI:
https://doi.org/10.1007/s40194-021-01225-w
20. Hwang, B., Kim, Y.G., Lee, S. et al. (2005) Effective grain size
and charpy impact properties of high-toughness X70 pipeline
steels. Metallurgical and Materials Transactions A, 36, 2107–2114. DOI: https://doi.org/10.1007/s11661-005-0331-9
21. Stojanovic, N., Belhocine, A., Abdullah, O.I., Grujic, I.
(2023) The influence of the brake pad construction on noise
formation, people’s health and reduction measures. Environ
Sci. Pollut Res., 30, 15352–15363. DOI: https://doi.org/10.1007/s11356-022-23291-3
22. Li, X.C., Zhao, J.X., Cong, J.H. et al. (2021) Machine learning
guided automatic recognition of crystal boundaries in
bainitic/martensitic alloy and relationship between boundary
types and ductile-to-brittle transition behavior. J. Mater.
Sci. Technol., 84, 49–58. DOI: https://doi.org/10.1016/j.
jmst.2020.12.024
23. Atiquzzaman, M. (1992) Multiresolution hough transform-an
efficient method of detecting patterns in images. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 14(11), 1090–1095. DOI: https://doi.org/10.1109/34.166623
24. Zhuravel, I.M., Maksymovych, V.M. (2018) Quantitative
analysis of orientation and elongation of grains on metallographic
images using Hough transformations. Naukovyi
visnyk NLTU Ukrainy, 28(5), 135–139 [in Ukrainian]. DOI:
https://doi.org/10.15421/40280528
Advertising in this issue: