2018 №02 (05) DOI of Article
2018 №02 (07)

Electrometallurgy Today 2018 #02
SEM, 2018, #2, 45-51 pages
Technological and metallurgical peculiarities of melting of titanium alloy ingots in chamber-type electroslag furnaces

Journal                    Sovremennaya Elektrometallurgiya
Publisher                 International Association «Welding»
ISSN                      2415-8445 (print)
Issue                       № 2, 2018 (May)
Pages                      45-51
I. V. Protokovilov, A. T. Nazarchuk, D. A. Petrov, V. B. Porokhonko
E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazimir Malevich Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
Considered are technological and metallurgical peculiarities of melting the titanium alloys in chamber-type electroslag furnaces. Selection of technological diagram of ESR of titanium was grounded, technology of manufacture of consumable electrodes, made of sponge titanium, was described, the problems of selection of a flux composition and modes of melting space gas protection were considered. Titanium alloy ingots were produced in different shapes (cylindrical, hollow, square) and chemical composition. It is shown that by both the quality of metal melted and also the technical-economic characteristics, the ESR can compete with other metallurgical processes of producing the titanium alloy ingots. Ref. 26, Tabl. 1, Fig. 6.

Key words: chamber-type electroslag remelting; titanium alloys; consumable electrode; ingot; flux
Received:                27.02.18
Published:               25.05.18
  1. Gurevich, S.M., Didkovsky, V.P. (1963) Properties of commercial titanium and alloys of OT4 type produced by electroslag melting. Svarka, 4, 27–33 [in Russian].
  2. Gurevich, S.M., Didkovsky, V.P., Novikov, Yu.K. (1963) Electroslag melting of titanium alloy ingots. Ibid., 10, 37–42 [in Russian].
  3. Kompan, Ya.Yu., Protokovilov, I.V., Nazarchuk, A.T. (2008) Fine-grained ingots of multicomponent titanium alloys. Teoriya i Prakt. Metallurgii, 2, 35–40 [in Russian].
  4. Kompan, Ya.Yu., Nazarchuk, A.T., Petrov, D.A. et al. (2009) Intermetallic heat-hardening of titanium alloys, produced by method of magnetically-controlled electroslag melting. Elektrometall., 1, 1–11 [in Russian].
  5. Protokovilov, I.V., Petrov, D.A., Porokhonko, V.B. (2016) Electroslag melting and thermomechanical treatment of high-strength titanium pseudo ?-alloy TS6. Ibid., 3, 16–20 [in Russian]. https://doi.org/10.15407/sem2016.03.03
  6. Protokovilov, I.V., Petrov, D.A. (2017) Structure and properties of high-strength titanium alloy Ti-10-2-3 of electroslag remelting. Ibid., 1, 9–14 [in Russian]. https://doi.org/10.15407/sem2017.01.02
  7. Protokovilov, I.V., Nazarchuk, A.T., Petrov, D.A., Porokhonko, V.B. et al. (2015) Application of discharges of capacitors for control of metal crystallization in ESR. Ibid., 4, 3–8 [in Russian].
  8. Paton, B.E., Medovar, B.I., Saenko, V.Ya. et al. (1994) Production of sponge titanium consumable electrodes by ESR and ASR methods. Problemy Spets. Elektrometallurgii, 3–4, 7–11 [in Russian].
  9. Zhadkevich, M.L., Shapovalov, V.A., Konstantinov, V.S. et al. (2005) Production of consumable electrodes by titanium sponge compaction under current. Advances in Electrometallurgy, 3, 58–61.
  10. Protokovilov, I.V., Petrov, D.A., Porokhonko, V.B., Babich, L.M. (2013) Manufacture of consumable electrodes for magnetically-controlled electroslag melting of titanium. Elektrometallurgiya, 3, 8–11 [in Russian].
  11. Podgaetsky, V.V., Kuzmenko, V.G. (1988) Welding slags. Kiev, Naukova Dumka [in Russian]. Kompan, Ya.Yu., Shcherbinin, E.V. (1989) Electroslag welding and melting with controlled MHD-processes. Moscow, Mashinostroenie [in Russian]. (1986) Metallurgy and technology of welding of titanium and its alloys. Ed. by V.N. Zamkov. Kiev, Naukova Dumka [in Russian]. Medovar, L.B., Saenko, V.Ya., Ryabinin V.A. (2010) Selection of fluxes for ASR in producing titanium ingots. Elektrometall., 1, 8–11 [in Russian].
  12. Protokovilov, I.V. (2008) Electroslag melting of halogenide oxygen-free fluxes. Advances in Electrometallurgy, 2, 12–14.
  13. Ryabtsev, A.D., Troyansky, A.A., Mastepan, V.Yu. et al. (2003) About electrical conductivity of fluxes of CaF2 Ibid., 1, 2–3.
  14. Protokovilov, I.V., Porokhonko, V.B., Goncharov, I.A., Mishchenko, D.D. (2015) Investigation of physical and technological properties of salt fluxes for ESR of titanium. Elektrometall., 3, 7–12. https://doi.org/10.15407/sem2015.03.01
  15. Kompan, Ya.Yu. Protokovilov, I.V., Petrov, A.M. (2003) Flux for magnetically-controlled electroslag melting of titanium alloys. Pat. UA 55502, Ukraine, Int. Cl. B23K35/36 [in Ukrainian].
  16. Protokovilov, I.V., Porokhonko, V.B. (2016) Flux for electroslag remelting of titanium alloys. Pat. UA 110591 C2 Ukraine [in Ukrainian].
  17. Protokovilov, I.V. (2012) Degassing of electrode, pressed of spongy titanium, in the process of chamber ESR furnace evacuation. Elektrometall., 1, 12–15 [in Russian].
  18. Ratiev, S.N., Ryabtseva, O.A., Troyansky, A.A. et al. (2010) Titanium alloying with oxygen from gas phase in chamber-type electroslag remelting of titanium sponge. Ibid., 2, 8–12 [in Russian].
  19. Protokovilov, I.V., Petrov, D.A. (2011) Production of alloys of Ti–Ni system with shape memory effect by magnetically-controlled electroslag melting method. Titan, 4(34), 40–44 [in Russian].