Eng
Ukr
Rus
Print
2018 №03 (05) DOI of Article
10.15407/sem2018.03.06
2018 №03 (07)

Electrometallurgy Today 2018 #03
SEM, 2018, #3, 39-44 pages
 
Calculation of equilibrium diagrams of state and phase transformations of titanium alloys of titanium-aluminium system

Journal                    Современная электрометаллургия
Publisher                 International Association «Welding»
ISSN                      2415-8445 (print)
Issue                       № 3, 2018 (October)
Pages                      39-44
 
 
Authors
G.M. Grigorenko, V.A. Kostin, S.G. Grigorenko
E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazimir Malevich Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

Basing on the CALPHAD methodology a method of construction of an equilibrium diagram of state and thermokinetic diagram of transformation of intermetallic alloy of Ti–Al system was suggested. The effect of aluminium on temperature of transformation of titanium intermetallic Ti3Al was determined. It was shown that with increase of aluminium content in intermetallic Ti3Al from 10 up to 29 at. % the temperature of beginning of β-Ti→Ti3Al transformation is increased from 520 up to 1170 °С. The further increase in aluminium content in intermetallic from 29 up to 40 аt. % leads to negligible decrease in initial temperature of transformation to 1140 °С. The developed method can be applied for modeling of thermokinetic diagrams of anisothermic transformations in complex titanium alloys. 13 Ref., 6 Fig.
Key words: titanium alloys; intermetallics; titanium aluminides; phase transformations; Gleeble 3800; regression analysis
 
Received:                20.06.18
Published:               01.10.18

References
1. Iliin, A.A., Kolachev, B.A., Polkin, I.S. (2009) Titanium alloys. Composition, structure, properties: Refer. b Moscow, VILS-MATI [in Russian].
3. Appel, F., Paul, J. D. H., Oehring, M. (2011) Gamma titanium aluminide alloys: Science and Technology. Wiley–VCH Verlag&Co. https://doi.org /10.1002/9783527636204
4. Lipsitt, H.A., Shechtman, D., Schafrik, R.E. (1991) Transact., 6A.
5. Saunders, N., Miodownik, A. P. (1998) CALPHAD — Calculation of phase diagrams. Ed. by R. . Cahn. Elsevier Science, Oxford.
6. Fan, Z., Tsakiropoulos, P., Miodownik, A.P. (1994) A generalized law of mixtures. Mater. Sci., 29(141).
7. Lukas, H.L., Fries, S.G., Sundman, B. (2007) Computational thermodynamics: The Calphad method. Cambridge, U.K., Cambridge University Press. https://doi.org /10.1017/CBO9780511804137
8. Khina B.B., Goransky G.G. (2016) Thermodynamics of multicomponent amorphous alloys: Comparison of different approaches. In: of Int. Sci.-Techn. Conf. on Modern Methods and Technology of Production and Processing of Materials. Materialovedenie, Minsk [in Russian].
9. Dinsdale, A.T. (1991) SGTE data for pure elements. Calphad, 15(4), 317–425. https://doi.org /10.1016/0364-5916(91)90030-N
10. Akhonin, S.V., Belous, V.Yu., Muzhichenko, A.F., Selin, R.V. (2013) Mathematical modeling of structural transformations in HAZ of titanium alloy VT23 during TIG welding. The Paton Welding J., 3, 24–27.
11. Orlov, N.Yu. (1986) A method of calculating selfconsistent potentials for a mixture of chemical elements. USSR Comput. Math. Math. Phys., 26(8), 1215 [in Russian]. https://doi.org /10.1016/0041-5553(86)90092-3
12. Grigorenko, G.M., Kostin, V.A. (2013) Prediction of temperatures of phase transformations in high-strength low-alloy steels. Elektrometall., 1, 33–39 [in Russian].
>