2018 №04 (06) DOI of Article
2018 №04 (02)

Electrometallurgy Today 2018 #04
Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2018, #4, 19-35 pages

Development of technologies of electron beam melting of metalS at the E.O. Paton Electric Welding Institute of the NAS of Ukraine

B. E. Paton, S. V. Akhonin, V. A. Berezos

E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazimir Malevich Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

It is shown that the technology of electron beam melting is the most challenging process for producing of quality extra-pure ingots of metals and alloys. The works on the development of these technologies were started at the E.O. Paton Electric Welding Institute in the 60s of the last century. To realize the technologies of electron beam melting in practice, the specialized electron beam installations of various designs were designed and manufactured at the E.O. Paton Electric Welding Institute. Mathematical models of the processes of refining, evaporation and solidification in electron beam melting were developed. The carried out research works showed that the technology of electron beam melting is the most effective and economically justified method of producing extra-pure niobium, tantalum, vanadium, zirconium, copper and many other metals. The technologies were developed for industrial application of this method for producing ingots of non-ferrous metals and their alloys. The works are carried out for the improvement of existing and development of new alloys for the needs of domestic industry, medicine and defense sector, as well as technology of their melting by the electron beam melting method. Ref. 33, Tabl. 12, Fig. 21.
Key words: electron beam melting; ingot; non-ferrous metals; refining; chemical composition; structure; mechanical properties; equipment
Received:                26.09.18
Published:               15.11.18

1. Maltsev, M.V., Klyatchko, L.I., Doronkin, E.D., Abalakhin, A.V. (1981) Vacuum metallurgy of refractory metals and hard alloys. Moscow, Metallurgiya [in Russian].
2. Voevodin, V.N. (2007) Structural materials of nuclear power engineering as a challenge of 21st century. Voprosy Atomnoj Nauki i Tekhniki, 2, 10–22 [in Russian].
3. Rogov, V.A., Soloviov, V.V., Kopylov, V.V. (2008) New materials in machine-buiding. Moscow, RUDN [in Russian].
4. Movchan, B.A., Tikhonovsky, A.L., Kurapov, Yu.A. (1972) Electron beam melting and refining of metals and alloys. Kiev, Naukova Dumka [in Russian].
5. Ladokhin, S.V., Kornyushin, Yu.V. (1988) Electron beam scull melting of metals and alloys. Kiev, Naukova Dumka [in Russian].
6. Tikhonovsky, A.L., Tur, A.A. (1984) Refining of metals and alloys by electron beam melting method. Kiev, Naukova Dumka [in Russian].
7. Benshou, R.F. (1965) Introduction in technology of electron beam processes. Moscow, Metallurgiya [in Russian].
8. Bashenko, V.V. (1972) Electron beam units. Leningrad, Mashinostroenie [in Russian].
9. Schiller, S., Forster, H., Bakish, R. (1985) A new phase in electron beam melting. In: Proc. of 8th Int. Conf. on Vacuum Metallurgy (Linz, Austria, Sept. 30–Oct. 4, 1985). Linz, Brucknerhous, 1292–1309.
10. Kravets, A.N., Derecha, A.Ya., Trigub, N.P. et al. (1985) Units for electron beam melting with cold hearth. Problemy Spets. Elektrometallurgii, 59, 74–85 [in Russian].
11. Bakish, R. (1983) Hoehlistungs-Elektronenkanonen aus der DDR in USA. LEW-Nachr., 32, 12–13.
12. Hunt, C., Harrison, C. (1971) Arco's facility for steel refining and casting with induction furnaces and electron beam. Iron and Steel Eng., 8, 85–88.
13. Melanie, L. (1990) A JM's new furnace cleans up alloys. Metal Bull. Mon., Sept., 30–31.
14. Shiller, S., Heisig, U., Panzer, S. (1976) Elektronenstrahltechnologie. Forschungsinst. Manfred von Ardenne. Dresden, LEW.
15. Paton, B.E., Trigub, N.P., Akhonin, S.V. (2008) Electron beam melting of refractory and highly reactive metals. Kiev, Naukova Dumka [in Russian].
16. Zelikman, A.N., Korshunov, B.G., Elyutin, A.V., Zakharov, A.M. (1990) Niobium and tantalum. Moscow, Metallurgiya [in Russian].
17. Varich, I.Yu., Akhonin, S.V., Trigub, N.P. (2005) Utilization of tantalum scrap by means of electron beam melting. Advances in Electrometallurgy, 3, 40–42 [IN Russian].
18. Akhonin, S.V. (2000) Efficiency of refining and losses on evaporation in electron beam melting of tantalum. Problemy Spets. Elektrometallurgii, 3, 33–37 [in Russian].
19. Romberg, M., Schumann, R., Stephan, H., Stump, H. (1986) Electron beam melting and refining of superalloys for ingot and bar stick production. In: Proc. of Conf. on Electron Beam Melting and Ref. State-of-the Art 1986. N.-Y., Bakish Mat., 260–276.
20. Harker, H. R., Entriken, C. H. (1988) EB cold hearth melting (EBCHM) of space age metals. In: Proc. of 2nd Int. Sampe Metals and Metals Process. Conf. (Dayton, Ohio, August 2–4, 1988. Calif.), Corina, 2, 128–134.
21. Bakish, R. (1984) Electron beam melting — state of the art 1984. J. Metals, 6, 42–44. https://doi.org/10.1007/BF03338471
22. Tien, J. K., Nardone, V. C. (1984) The US superalloy industry — status and outlook. Ibid., 9, 52–57.
23. Paton, B.E., Tikhonovsky, A.L., Trigub, N.P. et al. (1990) Producing of fine-crystalline homogeneous ingots in electron beam melting with cold hearth. Problemy Spets. Elektrometallurgii, 1, 57–61 [in Russian].
24. Trigub, N.P., Kalinyuk, A.N., Tikhonovsky, A.L. et al. (1991) Recycling of waste of titanium production by method of electron beam melting with cold hearth. Ibid., 1, 59–63 [in Russian].
25. Paton, B.E., Trigub, N.P., Akhonin, S.V., Zhuk, G.V. (2006) Electron beam melting of titanium. Kiev, Naukova Dumka [in Russian].
26. Trygub, M.P., Ishchuk, Yu.T., Akhonin, S.V. et al. (2002) Electron gun for melting of metals. Pat. 51752, Ukraine [in Ukrainian].
27. Trygub, M.P., Pap, P.A., Zhuk, G.V., Khomutsky, S.V. (2003) Cold hearth for producing of oxygen-free copper in electron beam units. Pat. 56309, Ukraine, Int. Cl. C22B9/22, B22D41/00, C22B15/14 [in Ukrainian].
28. Trigub, N.P., Zhuk, G.V., Akhonin, S.V. (2004) Electron beam melting of heat-resistant alloys using an intermediate crucible. Advances in Electrometallurgy, 1, 9–14.
29. Tikhonovsky, A.L., Akhonin, S.V. (1991) Calculation method for providing of set composition of alloys in EBM. In: Physical and chemical principles of metallurgical processes. Pt 2. Moscow, Chermetinformatsiya, 16–18 [in Russian].
30. Trigub, N.P., Akhonin, S.V. (1996) Optimization of melting of steels and alloys ingots in electron beam unit with cold hearth. Problemy Spets. Elektrometallurgii, 2, 12–17 [in Russian].
31. Bewley, B. P., Gigliotti, M. F. X. (1977) Dissolution rate measurements of TiN in Ti-6242. Acta Mater., 45, 1, 357–370. https://doi.org/10.1016/S1359-6454(96)00098-5
32. Bellot, J.-P., Mitchell, A. (1994) Hard-Alfa particle behaviour in a titanium alloy liquid pool. Light Metalls, 2, 1187–1193.
33. Akhonin, S. V., Kalinuk, O. M., Semiatin, S. L. (2004) Modelling of the EBCHM process for titanium alloys. Ti-2003 science and technology. In: Proc. of the 10th World Conf. on Titanium. Wiley-VCH Verlag, Weinheim, 1, 197–204.