Eng
Ukr
Rus
Print
2019 №02 (02) DOI of Article
10.15407/sem2019.02.03
2019 №02 (04)

Electrometallurgy Today 2019 #02
SEM, 2019, #2, 13-21 pages

Journal                    Современная электрометаллургия
Publisher                International Association «Welding»
ISSN                      2415-8445 (print)
Issue                       № 2, 2019 (June)
Pages                      13-21


Producing of thick vacuum condensates of high-entropic alloys CrFeCoNiCu and AlCrFeCoNiCu by the method of electron beam deposition

A.I. Ustinov1, S.S. Polishchuk2, S.A. Demchenkov1, T.V. Melnichenko1
1E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazimir Malevich Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2G.V.Kurdyumov Institute for Metal Physics of the NAS of Ukraine. 36 Academician Vernadsky Blvd., 03680, Kyiv. E-mail: metal@imp.kiev.ua

Regularities of formation of thick (up to 100μm) condensates of high-entropic alloys of CrFeCoNiCu and AlCrFeCoNiCu systems from a vapor phase during electron beam deposition were investigated. Vacuum condensates of alloy CrFeCoNiCu at the stationary mode of evaporation of ingot CrFeCoNiCu and those of alloy AlCrFeCoNiCu by combined deposition of vapor flows of CrFeCoNiCu and Al on common substrate were produced. It was found that the stationary mode of evaporation of ingot CrFeCoNiC was preceded by a transition process of evaporation of elements with alternative ratios of components, predetermined by difference in coefficients of their activity in the melt pool. It is shown that the temperature boundaries of structural zones of vacuum condensates of high-entropic alloys were shifted with respect to boundaries of structural zones, characteristic to pure metals and compounds. Ref. 31, Tabl. 2, Fig. 8.
Key words: high-entropic alloys; electron beam deposition; vacuum condensates; phase composition; structural zones; crystallographic texture

Received:                18.03.19
Published:               13.06.19


References

1. Murty, B.S., Yeh Jien-Wei, Ranganathan, S. (2014) High entropy alloys. Amsterdam, Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-800251-3.00002-X
2. Tong, C.J., Chen, M.R., Chen, S.K. et al. (2005) Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurg. and Mater. Transact. A., 36, 1263-1271. https://doi.org/10.1007/s11661-005-0218-9
3. Hsu, C.Y., Juan, C.C., Wang, W.R. et al. (2011) On the superior hot hardness and softening resistance of AlCoCr(x)FeMo(0.5)Ni high-entropy alloys. Mater. Sci. and Engin.: A., 528, 3581-3588. https://doi.org/10.1016/j.msea.2011.01.072
4. Chuang, M.H., Tsai, M.H., Wang, W.R. et al. (2011) Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Materialia, 59, 6308-6317. https://doi.org/10.1016/j.actamat.2011.06.041
5. Dolique, V., Thomann, A.-L., Brault, P. et al. (2010) Thermal stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situ XRD analysis. Surface & Coatings Technology, 204, 1989-1992. https://doi.org/10.1016/j.surfcoat.2009.12.006
6. Wu, Z., David, S.A., Feng, Z., Bei, H. (2016) Weldability of a high entropy CrMnFeCoNi alloy. Scripta Materialia, 124, 81-85. https://doi.org/10.1016/j.scriptamat.2016.06.046
7. Braeckman, B.R., Boydens, F., Hidalgo, H. et al. (2015) High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films, 580, 71-76. https://doi.org/10.1016/j.tsf.2015.02.070
8. Shaginyan, L.R., Gorban', V.F., Krapivka, N.A. et al. (2016) Properties of coatings of the Al-Cr-Fe-Co-Ni-Cu-V high entropy alloy produced by the magnetron sputtering. J. of Superhard Materials, 38(1), 33-44. https://doi.org/10.3103/S1063457616010044
9. Li, X., Zheng, Z., Dou, D., Li, J. (2016) Microstructure and properties of coating of FeAlCuCrCoMn high entropy alloy deposited by direct current magnetron sputtering. Materials Research, 19(4), 802-806. https://doi.org/10.1590/1980-5373-MR-2015-0536
10. Stefaniak, A. (2017) The kinetics of growth of high entropy alloy layers sputtered on tungsten powder substrate. World Scientific News, 76, 60-65.
11. Chang, S.Y., Lin, S.Y., Huang, Y.C. (2011) Microstructures and mechanical properties of multi-component (AlCrTaTiZr)NxCy nanocomposite coatings. Thin Solid Films, 519, 4865-4869. https://doi.org/10.1016/j.tsf.2011.01.043
12. Sobol', O.V., Andreev, A.A., Gorban, V.F. (2012) Reproducibility of the single-phase structural state of the multielement high-entropy Ti-V-Zr-Nb-Hf system and related superhard nitrides formed by the vacuum-arc method. Technical Physics Letters, 38(7), 616-619. https://doi.org/10.1134/S1063785012070127
13. Wang, L.M. (2011) The microstructure and strengthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySizAlTi0.2 high-entropy alloys. Materials Chemistry and Physics, 126, 880-885. https://doi.org/10.1016/j.matchemphys.2010.12.022
14. Huang, P.K., Yeh, K.-W., Shun, T.T., Chen, S.-K. (2004) Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Advanced Engineering Materials, 6, 74-78. https://doi.org/10.1002/adem.200300507
15. Polishchuk, S.S., Telychko, V.A., Ustinov, A.I. (2009) Formation of complex metallic alloys of Al-Co system at the physical vapor deposition. Advances in Electrometallurgy, 1, 44-49.
16. Ustinov, А.I., Polishchuk, S.S., Demchenkov, S.А., Petrushinets, L.V. (2015) Effect of microstructure of vacuum-deposited Fe100-xNix (30 < x < 39) foils with FCC structure on their mechanical properties. J. of Alloys and Compounds, 622, 54-61. https://doi.org/10.1016/j.jallcom.2014.10.039
17. Ustinov, A.I., Movchan, B.A., Polishchuk, S.S. (2004) Formation of nanoquasicrystalline Al-Cu-Fe coatings at electron beam vapor deposition. Scripta Materialia, 50(4), 533-538. https://doi.org/10.1016/j.scriptamat.2003.10.025
18. Ustinov, A.I., Polishchuk, S.S. (2005) Peculiarities of structure and properties of quasicrystalline Al-Cu-Fe coatings produced by EBPVD process. Philosophical Magazine, 86, 971-977. https://doi.org/10.1080/14786430500263454
19. Ustinov, A., Polishchuk, S.S., Scorodzievskii, V., Telychko, V. (2009) Structure and properties of quasicrystalline and approximant EBPVD coatings of Al-based systems. Zeitschrift für Kristallographie, 224, 9-12. https://doi.org/10.1524/zkri.2009.1109
20. Guo, S., Ng, C., Lu, J., Liu, C.T.C. (2011) Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. of Appl. Phys., 109, 103505-1-103505-5. https://doi.org/10.1063/1.3587228
21. Tong, C.J., Chen, Y.-L., Yeh, J.-W. (2005) Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurg. and Mater. Transact. A, 36, 881-893. https://doi.org/10.1007/s11661-005-0283-0
22. Hielscher, R., Schaeben, H. (2008) A novel pole figure inversion method: specification of the MTEX algorithm. J. of Applied Crystallography, 41, 1024-1037. https://doi.org/10.1107/S0021889808030112
23. Simon, D., Pal, U. Mathematical modeling of a melt pool driven by an electron beam. Metallurg. and Mater. Transact. B, 30(3), 515-525. https://doi.org/10.1007/s11663-999-0085-7
24. Kurapov, Yu.A. (1984) Processes of vacuum refining of metals in electron beam melting. Kiev, Naukova Dumka [in Russian].
25. Park, Y.-G., Gaskell, D.R. (1989) The thermodynamic activities of copper and iron in the system copper-iron-platinum at 1300 °C. Metallurg. Transact. B, 2, 127-135. https://doi.org/10.1007/BF02825593
26. Kubista, J., Vrestál, J. (2000) Thermodynamics of the liquid Co-Cu system and calculation of phase diagram. J. of Phase Equilibria, 21, 125-129. https://doi.org/10.1361/105497100770340165
27. Rammensee, W., Fraser, D.G. (1981) Activities in solid and liquid Fe-Ni and Fe-Co alloys determined by Knudsen cell mass spectrometry. Berichte der Bunsengesellschaft für physikalische Chemie, 85(7), 588-592. https://doi.org/10.1002/bbpc.19810850713
28. Belton, G.R., Fruehan, R.J. (1970) Mass-spectrometric determination of activities in Fe-Cr and Fe-Cr-Ni alloys. Metallurg. Transact., 1, 781-787.
29. Movchan, B.A., Demchishin, A.V. (1969) Structure and properties of thick condensates of nickel, titanium, tungsten, aluminum oxides, and zirconium dioxide in vacuum. The Physics of Metals and Metallography, 28, 83-90.
30. Thornton, J.A. (1977) High-rate thick film growth. Annual Review of Mater. Sci., 7, 239-260. https://doi.org/10.1146/annurev.ms.07.080177.001323
31. Zhang, H., He, Y.Z., Pan, Y., Guo, S. (2014) Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy. J. of Alloy and Compounds, 600, 210-214. https://doi.org/10.1016/j.jallcom.2014.02.121
>