Eng
Ukr
Rus
Print

2019 №03 (05) DOI of Article
10.15407/sem2019.03.06
2019 №03 (07)

Electrometallurgy Today 2019 #03
Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2019, #3, 35-44 pages

Journal Современная электрометаллургия
Publisher International Association «Welding»
ISSN 2415-8445 (print)
Issue № 3, 2019 (September)
Pages 35-44
 

New promising titanium-based alloys

S.V. Akhonin, V.A. Berezos, V.Yu. Belous


E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazimir Malevich Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

Work has been performed on development of new titanium alloys with improved service properties. The following alloys were developed: SP15, which can be applied for manufacturing heavy-duty parts, used in aggressive media; TM1 and TM2 are alloys for medical applications, designed for different strength levels; T110 is an alloy which in terms of adaptability to fabrication, weldability and performance under the conditions of cyclic loads exceeds the widely used in aviation VT22 alloy; T120 is a complex (α + β)-titanium alloy with a set of high mechanical and service properties, which is also readily weldable. Ref. 17, Tabl. 8, Fig. 11.
Key words: titanium alloys; electron beam melting; ingot; chemical composition; deformation; semi-finished products; structure; mechanical properties
 
Received: 08.04.19
Published: 03.10.19
 

References

1. Antashev, V.G., Nochovnaya, N.A., Shiryaev, A.A., Izotova, A.Yu. (2011) Perspectives of development of new titanium alloys. Vestnik MGTU im. N.E. Baumana, Ser. Mashinostroenie, S2, 60–67 [in Russian].
2. Khoreev, A.I., Khoreev, M.A. (2005) Titanium alloys, their application and perspectives of development. Materialovedenie, 7, 25–34 [in Russian].
3. Antonyuk, S.L., Molyar, A.G., Kalinyuk, A.N. et al. (2003) Titanium alloys for aircraft industry of Ukraine. Advances in Elektrometall., 1, 9–12 [in Russian].
4. Zamkov, V.N., Topolsky, V.F., Tyapko, I.K. (1996) Wire for welding of titanium (α+β)-alloys. Avtomatich. Svarka, 7, 51–52 [in Russian].
5. Belous, V.Yu., Zamkov, V.N., Petrichenko, I.K., Topolsky, V.F. (2003) Filler wire for narrow-gap welding of titanium alloy VT23. The Paton Welding J., 5, 46–48.
6. Zamkov, V.N., Topolsky, V.F., Tyapko, I.K. et al. (1993) Heat-treatable corrosion-resistant titanium alloy SP15. Avtomatich. Svarka, 8, 32–34 [in Russian].
7. Mutsuo Niinomi (2007) Titanium alloys for biomedical, dental and healthcare application. In: Proc. of the 11th World Conf. on Titanium (3–7 June, Kyoto, Japan). The Japan Inst. of Metals, 1417–1424.
8. Paton, B.E., Zamkov, V.N., Topolsky, V.F. (1995) Thermally stable high corrosion-resistant titanium alloy. Ukraine Pat. 7386 [in Russian].
9. Paton, B.E., Zamkov, V.N., Topolsky, V.F. (1996) Heat-treatable corrosion-resistant titanium alloy. Ukraine Pat. 7385 [in Russian].
10. Molyar, A.G., Kotsyuba, A.A., Bychkov, A.S. et al. (2015) Structural materials in aircraft construction. Kiev, KVITs [in Russian].
11. Zamkov, V.N., Topolsky, V.F., Trigub, N.P., Petrichenko, I.K. et al. (2001) High-strength titanium alloy. Pat. UA 40087 C22C14/00 Ukraine [in Russian].
12. Sokol, I.Ya., Ulyanin, E.A., Feldgandler, E.G. et al. (1989) Structure and corrosion of metals and alloys: Atlas. Moscow, Metallurgiya [in Russian].
13. Aleksandrov, V.K., Anoshkin, N.F., Bochvar, G.A. et al. (1979) Semiproducts from titanium alloys. Moscow, Metallurgiya [in Russian].
14. Akhonin, S.V., Selin, R.V., Berezos, V.A. et al. (2016) Development of new high-strength titanium alloy. Sovrem. Elektrometall., 4, 22-27 [in Russian]. https://doi.org/10.15407/sem2016.04.04
15. Iliin, A.A., Kolachev, B.A., Polkin, I.S. (2009) Titanium alloys. Composition, structure, properties. Moscow, VILS-MATI [in Russian].
16. (1983) GOST 5639–82: Steels and alloys. Methods of identification and definition of grain size [in Russian].
17. Akhonin, S.V., Berezos, V.O., Bilous, V.Yu. et al. (2016) High-strength titanium alloy. Ukraine Pat. 111002, Int. Cl. C22C 14/00 C22B 34/12. PWI.