Позорная война рф против Украины

Начата 20 февраля 2014 и полномасштабно продолжена 24 февраля 2022 года. С первых же минут рф ведет ее с нарушением законов и правил войны, захватывает атомные станции, уничтожает бомбардировками мирное население и объекты критической инфраструктуры. Правители и армия рф - военные преступники. Все, кто платит им налоги или оказывают какую-либо поддержку - пособники терроризма. Народ Украины вас никогда не простит и ничего не забудет.

2020 №02 (02) DOI of Article
2020 №02 (04)

Electrometallurgy Today 2020 #02
SEM, 2020, #2, 18-22 pages

Producing large-sized ingots of titanium aluminides by EBM method

S.V. Akhonin1, A.Yu. Severin1, V.O. Berezos1, O.M. Pikulin1, O.I. Glukhenkii2, O.I. Bondar2
1E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2Institute of Electrodynamics of the NAS of Ukraine. 57 Peremohy Ave., 03057, Kyiv, Ukraine. E -mail: gai56@ied.org.ua

Calculations for an ingot of 300 mm diameter of Ti-Al system intermetallic were conducted within the framework of the mathematical model of cylindrical ingots crystallization at electron beam melting. As a result of calculations, temperature fields in the ingot during electron beam melting were obtained, and technological modes of conducting the process were determined. The determined technological modes were used to produce a large-sized ingot of 300 mm diameter from Ti29Al alloy in electron beam installation UE-121. The quality of this ingot was studied and it was shown that application of optimized technological modes allows producing large-sized titanium aluminide ingots of homogeneous composition and without defects. Ref. 12, Table 1, Fig. 6.
Keywords: electron beam melting; intermetallic of Ti–Al system; mathematical model; ingot; chemical composition; structure

Received 04.20.2020


1. Appel, F., Ohring, M., Paul, J.D.H. et al. (2001) In: Proc. of the 2nd Int. Symp. on Structural Intermetallics. The Minerals, Metals & Mater. Soc., 63–72.
2. Postans, P.J., Cope, M.T, Moorhuse, S., Thakker, A.B. (1993) Applications of titanium aluminides in gas turbine engine components, Titanium 92. Science and technology. The Minerals and Materials Society, 2, 2907–2914.
3. Pavlinich, S.P., Zaitsev, M.V. (2018) Application of intermetallics of titanium alloys in casting of assemblies and GTE blades of lightweight structures for aircraft engines of new generation. Vestnik UGATU, 15(4), 200–202 [in Russian].
4. Bannykh, O.A., Povarova, K.B. (1989) Prospects of development of refractory and heat-resistant alloys and intermetallic compounds. In: New metallic materials. Kiev, PWI, 29–33 [in Russian].
5. Kulikovsky, R.A., Pakholka, S.N., Pavlenko, D.V. (2015) Prospects of commercial application of titanium aluminides in aircraft engine construction. Stroitelstvo, Materialovedenie, Mashinostroenie, 80, 369–372 [in Russian].
6. Iliin, A.A., Kolachev, B.A., Polkin, I.S. (2009) Titanium alloys. Composition, structure, properties: Refer. book. Moscow, VILS-MATI [in Russian].
7. Bernstein, M.L. (1979) Atlas of defects of steel. Moscow, Metallurgiya [in Russian].
8. Appel, F., Paul, J.D.H., Oehring, M. (2011) Gamma titanium aluminide alloys: Science and technology. Wiley-V.C.H. https://doi.org/10.1002/9783527636204
9. Illarionov, A.G., Popov, A.A. (2014) Technological and operational properties of titanium alloys: Manual. Ekaterinburg, Izd-vo Ural. Un-ta [in Russian].
10. Kablov, D.E., Panin, P.V., Shiryaev, A.A., Nochovnaya, N.A. (2014) Experience of application of vacuum-arc furnace ALD VAR L200 for casting of ingots of heat-resistant alloys based on titanium aluminides. Aviats. Materialy i Tekhnologii, 2, 27-33 [in Russian]. https://doi.org/10.18577/2071-9140-2014-0-2-27-33
11. Akhonin, S.V., Gorislavets, Yu.M., Glukhenkiy, A.I. et al. (2019) Modeling hydrodynamic and thermal processes in the mould in cold-hearth electron beam melting. Suchasna Elektrometal., 4, 9-17 [in Ukrainian]. https://doi.org/10.15407/sem2019.04.02
12. Gao Yong, Zhang Lijing, Gao Wenli, Zhang Hu (2011) Prediction and improvement of shrinkage porosity in TiAl based alloy. Research & Development, 8(1), 19–24.

Advertising in this issue: