Eng
Ukr
Rus
Print

2020 №02 (01) DOI of Article
10.37434/sem2020.02.02
2020 №02 (03)

Electrometallurgy Today 2020 #02
SEM, 2020, #2, 10-17 pages

Modern sensors of liquid metal level for ESR in a short collar mould

Authors
V.L. Petrenko1, G.P. Stovpchenko2, V.А. Tkachenko1, D.V. Kolomiets1, L.B. Medovar1
1E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2Engineering company PC «ELMET-ROLL». P.O. Box 259, 03150, Kyiv, Ukraine. E-mail: office@elmet-roll.com.ua

Abstract
Possibilities and limitations of existing types of level sensors for detecting the interface between metal and slag pools at electroslag remelting of ingots of different sizes in a short collar mold with ingot withdrawing are presented. The built-in type induction sensor of proprietary design, allowing measurement of the location of the slag-metal boundary with high precision has been developed and tested. The use of the signal of DUI-20 level sensor in the ESR control system makes it possible to operate a stable technological process in the automatic mode and to produce solid, hollow and surfaced electroslag ingots of the highest quality in short collar (of constant cross-section, T-shape and current supplying) moulds. Ref. 23, Fig. 3.
Keywords: metal level sensor; slag-metal interface; electroslag remelting; short collar mould; control system

Received 02.04.2020

References

1. Medovar, B.I., Boyko, G.A. (1991) Electroslag technology. Springer Science & Business Media. https://doi.org/10.1007/978-1-4612-3018-2
2. Eokyoung, A., Beaman, J., Williamson, R., Melgaard, D. (2010) Model-based control of electroslag remelting process using unscented Kalman filter. J. of Dynamic Systems Measurement and Control-Transactions of the ASME. DOI 132.10.1115/1.4000660. https://doi.org/10.1115/1.4000660
3. www.elmet-roll.com.ua
4. Kubin, M., Scheriau, A., Knabl, M. et al. (2013) Operational experience of large sized ESR plants and attainable quality of ESR ingots with a diameter of up to 2600 mm. In: Proc. of LMPC. https://doi.org/10.1007/978-3-319-48102-9_8
5. https://www.australtek.com/products/steellevel.html
6. Van den Berg, F., Yang, H. (2011) Real-time meniscus level and slag thickness measurement by RADAR. Pt II: Results on liquid steel and melting mould powder. In: Proc. (DESAI, December 2-3, 2011, Jamshedpur, India). http://eprints.nmlindia. org/4603/1/21-28.pdf
7. Lieftucht, D., Reifferscheid, M., Schramm, T. et al. (2013 ) HD mold - a new fiber-optical-based mold monitoring system. Iron and Steel Technology, 10, 87-95.
8. https://www.precimeter.com/zh-hans/.../laser-triangulation/proh-mould-edition/
9. http://www.ergolines.it/products/ptc/?str=1
10. Alghisi, D., Milano, M., Pazienza, L. (2005) From ESR to continuous CC-ESRR process: Development in remelting technology towards better products and productivity. La Metallurgia Italiana, 1, 21-32.
11. Levkov, L.Ya., Kamantsev, S.V., Krieger, Yu.N. et al. (2012) A method for controlling the level of a liquid metal or slag bath in a mold and a device for its implementation. RF Pat. 2456118 [in Russian].
12. Fabrizzioni, M., Mikhelon, G., Del Corso, F. et al. (2015) New radiometric sensor for measurement of liquid metal level in mold. Chyornye Metally, 6, 54-62 [in Russian].
13. Korshikov, S.P., Fomin, V.I., Ustinov, A.I., Formakidov, A.M. (2019) Development and implementation of system for determination of actual level of metal and slag mixture thickness in mold of BCCM of JSC OEMK. Metallurg, 9, 37-40 [in Russian]. https://doi.org/10.1007/s11015-020-00931-y
14. https://www.vuhz.cz/images/snimace-kontiliti/pdf/mold-level-measuring-system.pdf
15. Ratajczak, M., Hernandez, D., Richter, T. et al. (2017) Measurement techniques for liquid metals IOP. Conf. Series: Materials Science and Engineering, 228. https://doi.org/10.1088/1757-899X/228/1/012023
16. Sano, K., Ando, S., Kawase, Y. et al. (2014) The eddy-current type continuous casting mold level meter. Tetsu-to-Hagane, 100, 30-31. https://doi.org/10.2355/tetsutohagane.100.R30
17. Medovar, B.I et al. (1996) In: Proc. of 38 MWSP (Clevland, USA, 13-16 Oct. 1996), 83-87.
18. Petrenko, V., Medovar, L., Tkachenko, V. (2012) Modern sensors for metal level indication for ESR and CCM moulds. In: Proc. of 5th Intern. Congress on the Science and Technology of Steelmaking (ICS 2012, Dresden), Publish. on CD. Paper ID 1307.
19. Medovar, L., Stovpchenko, G., Fedorovskiy, B., Petrenko, V. (2013) ESR technologies utilizing liquid metal: Process, equipment and products. In: Proc. of 5th Baosteel Biennial Academic conference BAC-2013). Publish. on CD.
20. Yanwu Dong, Zhouhua Jiang, Medovar, L. et al. (2013) Temperature distribution of electroslag casting with liquid metal using current conductive ring. Steel Research International, 84(10), 1011-1017. https://doi.org/10.1002/srin.201300041 https://doi.org/10.1002/srin.201300041
21. Polishko, G., Stovpchenko, G., Medovar, L., Kamkina, L. (2019) Physicochemical comparison of electroslag remelting with consumable electrode and electroslag refining with liquid metal. Ironmaking & Steelmaking, 46(8), 789-793. https://doi.org/10.1080/03019233.2018.1428419
22. Zaitsev, V., Medovar, L., Stovpchenko, G. et al. (2016) Reliable steel-copper anodes for direct current electric arc furnaces manufactured by electroslag remelting under two circuits diagram. In: Proc. of the 2nd Medovar Memorial Symposium (MMS100) (07-10 June 2016, Kyiv, Ukraine), 211-215.
23. Medovar, L.B., Chernets, A.V., Grabovsky, Ts.F. et al. (2000) Experience in manufacture and application of rollers for ESS LM. Problemy Spets. Elektrometallurgii, 3, 3-9 [in Russian].

Advertising in this issue: