"Suchasna Elektrometallurgiya" (Electrometallurgy Today), 2021, #1, 17-26 pages
Structural transformations at cooling sparsely-alloyed pseudo-β-titanium alloy Ti–2.8Al–5.1Mo–4.9Fe
S.V. Akhonin, V.Yu. Bilous, R.V. Selin, V.A. Kostin
E.O. Paton Electric Welding Institute of the NAS of Ukraine.
11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine. E-mail: office@paton.kiev.ua
Abstract
The paper presents the results of mathematical modeling of thermal cycle of welding sparsely-alloyed titanium alloy
Ti–2.8Al–5.1Mo–4.9Fe and experimental studies of its impact on the alloy structural transformations. Thermodynamic
characteristics of Ti–2.8Al–5.1Mo–4.9Fe alloy at different temperatures were determined and the diagram of
anisothermal transformation at is cooling was plotted, indicating the lines of the start (875 °C) and end (600...660 °C)
of β→(α+β) phase transformation. The diagram was complimented by the dependence of β-phase fraction on maximum
rates of metal cooling and it was established that the structure of the weld and HAZ metal consists of β-phase grains, in
which α-phase precipitates are present. Here, the smallest quantity of β-phase was found in the base metal on the level
of 49 %, and the largest — in the weld middle on the level of 87 %. Ref. 24, Tabl. 2, Fig. 13.
Keywords: sparsely-alloyed pseudo-β-titanium alloys; diagram; anisothermal transformations; structure; properties;
cooling rate
Received 20.01.2021
References
1. Kablov, E.N. (2012) Strategic trends for development of materials and technologies of their processing up to 2030. Aviats. Materialy i Tekhnologii, S, 7-17 [in Russian].
2. Antashev, V.G., Nochovnaya, N.A., Shiryaev, A.A., Izotova, A.Yu. (2011) Prospects for development of new titanium alloys. Vestnik MGTU, Seriya Mashinostroenie, SP2, 60-67 [in Russian].
3. Dobrescu, M., Dimitriu, S., Vasilescu, M. (2011) Studies on Ti-Al-Fe low-cost titanium alloys manufacturing, processing and applications. Metalurgia Int., 16(4), 73.
4. Nochovnaya, N.A., Isaichev, A.V., Antashev, V.G. (2008) Problems of creation of saving titanium alloys and ways of their solution. Vse Materialy.. Entsiclop. Spravochnik. 5 , 10-15 [in Russian].
5. Boyer, R.R., Williams, J.C. (2011) Developments in research and applications in the titanium industry in the USA. In: Proc. of 12th World Conf. on Titanium, I, 10-19.
6. Khorev, A.I. (2007) Theoretical and practical fundamentals for improvement of structural strength of modern titanium alloys. Tekhnologiya Lyogkikh Splavov, 2, 144-153 [in Russian].
7. Nochovnaya, N.A., Panin, P.V., Alekseev, E.B., Bokov, K.A. (2014) Sparcely-doped titanium alloys for layered metal-polymer composite materials. Trudy VIAM, 11 [in Russian].
https://doi.org/10.18577/2307-6046-2014-0-11-2-28. Iliin, A.A., Kolachev, B.A., Polkin, I.S. (2009) Tinanium alloys. Composition, structure, properties: Refer. Book. Moscow, VILS-MATI [in Russian].
9. Niinomi, M. (2011) Recent trends in titanium research and development in Japan. In: Proc. 12th World Conf. on Titanium, I, 30-37.
10. Bania, P.J. (1993) Beta titanium alloys and their role in the titanium industry. Beta titanium alloys in the 90`s, TMS Publications, Warrendale, PA, 3-14.
11. Khorev, A.I. (2008) High-strength titanium alloy VT23 and its application in advanced welded structures. Svarochn. Proizvodstvo, 9, 3-8 [in Russian].
12. Lyasotskaya, V.S., Lyasotsky, I.V., Meshcheryakov, V.N. et al. (1986) Phase transformations in continuous cooling of VT64 and VT23 alloys. Izv. Vuzov, Tsvetnaya Metallurgiya, 2, 88-93 [in Russian].
13. Lyasotskaya, V.S. (2003) Heat treatment of welded joints of titanium alloys. Ed. by B.A. Kolachev. Moscow, Ekomet [in Russian].
14. Saunders, N., Miodownik, A.P., Cahn, R.W. (1998) CALPHAD - calculation of phase diagrams. Pergamon Materials Series, 1, Elsevier Sci., Oxford.
15. Fan, Z., Tsakiropoulos, P., Miodownik, A.P. (1994) A generalized law of mixtures. J. of Mater. Sci., 29, 141-150.
https://doi.org/10.1007/BF0035658516. Lukas, H.L., Fries, S.G., Sundman, B. (2007) Computational thermodynamics: The calphad method. Cambridge, U.K., Cambridge University Press.
https://doi.org/10.1017/CBO978051180413717. Khina, B., Goranskiy, G.G. (2017) Thermodynamics of multicomponent amorphous alloys: Theories and experiment comparison. Adv. Materials & Technologies, 1, 036-043.
https://doi.org/10.17277/amt.2017.01.pp.036-04318. Dinsdale, A.T. (1991) SGTE data for pure elements. Calphad, 15, 317(4).
https://doi.org/10.1016/0364-5916(91)90030-N19. Buchmayr, B., Kirkaldy, J.S. (1990) Modeling of the temperature field, transformation behavior, hardness and mechanical response of low alloy steels during cooling from the austenite region. J. Heat Treating, 8, 127-136.
https://doi.org/10.1007/BF0283163320. Porter, D.A., Easterling, K.E. (1992) Phase transformations in metals and alloys. Chapman & Hall, London.
https://doi.org/10.1007/978-1-4899-3051-421. Saunders, N., Li, X., Miodownik, A.P., Schille, J.-P. (2003) An integrated approach to the calculation of materials properties for Ti-alloys. In: Proc. of the 10th World Conf. on Titanium (3-18 July 2003, Hamburg, Germany), 1, Wiley-VCH Verlag GmbH & Co. KgaA, 197-204.
22. Kirkaldy, J.S., Venugopalan, D. (1984) Phase transformation in ferrous alloys. Ed. by A.R. Marder and J.I. Goldstein. AIME, Philadelphia, 125-148.
23. Akhonin, S.V., Belous, V.Yu., Selin, R.V. (2018) Effect of thermal cycle of TIG welding on structure and properties of pseudo-β-titanium alloys. The Paton Welding J., 8, 32-38.
24. Akhonin, S.V., Belous, V.Yu., Selin, R.V. (2018) Effect of preheating on thermal cycle of argon-arc welding of sparcely-doped titanium alloys. In: Proc. of 9th Int. Conf. on Mathematical Modeling and Information Technologies in Welding and Related Processes (10-14 September 2018, Odessa, Ukraine). Kiev, IAW, 19-22.
Advertising in this issue: