Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2023, #2, 5-13 pages
Electron beam melting of titanium alloys for medical purposes
V.O. Berezos, D.S. Akhonin
E.O. Paton Electric Welding Institute of the NAS of Ukraine.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
Abstract
The established regularities of the processes of alloying element evaporation and crystallization at electron beam
melting were the base for determination of the melting modes and optimization of the technology of producing defect-free and chemically homogeneous ingots of a promising Ti–6Al–7Nb titanium alloy for medical purposes, having
a homogeneous fine-grained structure without any traces of zonal segregation. Microstructural studies showed that
Ti‒6Al‒7Nb alloy is a two-phase α+β titanium alloy of martensitic type, in which 1…2 mm thick precipitates of
α-phase are observed on the boundaries of primary β-grains, and in the grain body formation of a platelike (widmanstaetten)
morphology of α- and β-phase precipitates is found, the length of which inside the grains is equal to 10…40 μm.
Such a structure ensures the best combination of the alloy mechanical characteristics, namely high values of strength
(905 MPa) and ductility (13.5 %), which meet the requirements of international standards for titanium alloys for medical
purposes. 20 Ref., 3 Tables, 12 Figures.
Keywords: titanium alloy, electron beam melting, medicine, evaporation, chemical composition, structure, mechanical
properties
Received 11.04.2023
References
1. Kawahara, H. (1992) Cytotoxicity of implantable metals and alloys. Bull. Jpn. Inst. Met. Mater., 31, 1033-1039.
https://doi.org/10.2320/materia1962.31.10332. Okazaki, Y., Ito, Y., Ito, A., Tateishi, T. (1993) Effect of alloying elements on mechanical properties of titanium alloys for medical implants. Ibid., 57, 332-337.
https://doi.org/10.2320/jinstmet1952.57.3_3323. Niinomi, M. (2000) Development of high biocompatible titanium alloys. Func. Mater., 20, 36-44.
4. Mutsuo, Niinomi (2007) Titanium alloys for biomedical, dental and healthcare application. In: Proc. of 11th World Conf. on Тitanium (Kyoto, Japan 3-7 June 2007). The Japan Inst. of Metals, 1417-1424.
5. Robert, B. Heimann (2020) Materials for medical application. De Gruyter STEM.
https://doi.org/10.1515/97831106192496. Fellah, Mamoun, Labaïz, Mohamed, Assala, Omar et al. (2014) Tribological behavior of Ti-6Al-4V and Ti-6Al-7Nb alloys for total hip prosthesis. Advances in Tribology, July, 1-13.
https://doi.org/10.1155/2014/4513877. Chlebus, Edward, Kuźnicka, Bogumiła, Kurzynowski, Tomasz, Dybała, Bogdan (2011) Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting. Materials Characterization, 62(5), 488-495.
https://doi.org/10.1016/j.matchar.2011.03.0068. Liu, Xuanyong, Chu, Paul K., Ding, Chuanxian (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Sci. and Eng.: R: Reports, 47(3), 49-121.
https://doi.org/10.1016/j.mser.2004.11.0019. López, M.F, Gutiérrez, A., Jiménez, J.A (2002) In vitro corrosion behaviour of titanium alloys without vanadium. Electrochimica Acta, 47(9), 1359-1364.
https://doi.org/10.1016/S0013-4686(01)00860-X10. Ajeel, Sami Abualnoun, Alzubaydi, Thair L., Swadi, Abdulsalam K. (2007) Influence of heat treatment conditions on microstructure of Ti-6Al-7Nb alloy as used surgical implant materials. Eng. and Technology J., 25(3), 431-442.
11. Kobayashi, E., Wang, T.J., Doi, H. et al. (1998) Mechanical properties and corrosion resistance of Ti-6Al-7Nb alloy dental castings. J. of Materials Sci.: Materials in Medicine, 9(10), 567-574.
https://doi.org/10.1023/A:100890940894812. Bolzoni, Leandro, Hari Babu, N., Ruiz-Navas, Elisa Maria, Gordo, Elena (2013) Comparison of microstructure and properties of Ti-6Al-7Nb alloy processed by different powder metallurgy routes. Key Eng. Materials, 551, 161-179.
https://doi.org/10.4028/www.scientific.net/KEM.551.16113. Oliveira, V., Chaves, R.R., Bertazzoli, R., Caram, R. (1998) Preparation and characterization of Ti-Al-Nb alloys for orthopedic implants. Brazilian J. of Chemical Eng., 15(4), 326-333.
https://doi.org/10.1590/S0104-6632199800040000214. Paton, B.E., Trigub, N.P., Akhonin, S.V., Zhuk, G.V. (2006) Electron beam melting of titanium. Kyiv, Naukovan Dumka [in Russian].
15. Grechanyuk, N.I., Kulak, L.D., Kuzmenko, N.N. et al. (2017) Melting of ingots of Ti-Nb-Si-Zr system titanium alloys by the method of electron beam melting. Suchasna Elektrometal., 2, 17-20.
https://doi.org/10.15407/sem2017.02.0316. Akhonin, S.V., Trigub, N.P., Zamkov, V.N., Semiatin, S.L. (2003) Mathematical modeling of aluminum evaporation during electron-beam cold-hearth melting of Ti6Al4V ingots. Metallurgy and Materials Transact. B, 34B, 447-454.
https://doi.org/10.1007/s11663-003-0071-417. Akhonin, S.V., Severin, A.Yu., Berezos, V.A., Erokhin A.G. (2013) Mathematical modelling of evaporation processes in melting of ingots of multicomponent titanium alloys in electron beam equipment with a cold hearth. Advances in Electrometallurgy, 4, 288-295.
18. Varich, I.Yu., Akhonin, S.V., Trigub, N.P., Kalinyuk, A.N. (1997) Evaporation of aluminium from titanium-based alloys during process of electron beam cold hearth melting. Problemy Spets. Elektromatellurgii, 4, 15-21 [in Russian].
19. Zhukhovitsky, A.A., Shvartsman, L.A. (1976) Physical chemistry. Moscow, Metallurgiya [in Russian].
20. Schiller, Z., Haising, U., Pantser, Z. (1980) Electron beam technology. Moscow, Energiya [in Russian].
Advertising in this issue: