Eng
Ukr
Rus
Print

2023 №03 (02) DOI of Article
10.37434/sem2023.03.03
2023 №03 (04)

Electrometallurgy Today 2023 #03
Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2023, #3, 13-18 pages

Thermal decomposition of hematite pellets at heating by argon plasma

V.O. Shapovalov1, V.G. Mogylatenko2, M.V. Karpets2, R.V. Kozin1

1E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute». 37 Pobedy Prosp., 03056, Kyiv, Ukraine. E-mail: vmogilatenko@gmail.com

Abstract
Global warming raised the issue of reducing greenhouse gas emissions in any industrial processes, including metallurgy. Solution of this problem in the metallurgical field is associated with direct reduction of iron ore with hydrogen and application of highly concentrated energy sources for heating, in particular plasma. At high temperatures, oxides can decompose in the liquid oxide melt even before hydrogen is used for reduction. It enables producing the wustite melt by oxygen content without hematite and magnetite. The conclusions reached were confirmed by thermodynamic calculations and results of studying the kinetics of decomposition of pellet oxides in plasma-arc melting in argon atmosphere. 18 Ref., 3 Tabl., 5 Fig.
Keywords: iron oxides, thermal decomposition, dissociation thermodynamics, decomposition kinetics, plasma-arc melting, wustite melt

Received 21.06.2023

References

1. Gura, K.Yu., Petruk, V.G. (2021) Analysis of modern tendencies of decarbonization and eco-modernizing of power engineering in Ukraine and in the world. Visnyk VPI, 5, 19-26 [in Ukrainian]. https://doi.org/10.31649/1997-9266-2021-158-5-19-26
2. Da Costa, A.R., Patisson, F. (2013) Modelling a new, low CO2 emissions, hydrogen steelmaking process. J. of Cleaner Production, 46, 27-35. DOI: https://arxiv.org/ftp/arxiv/papers/1402/1402.1715.pdf https://doi.org/10.1016/j.jclepro.2012.07.045
3. Spreitzer, D., Schenk, J. (2019) Reduction of iron oxides with hydrogen - A review. Steel Research Inter., 90(10), 1900108. https://doi.org/10.1002/srin.201900108
4. Zuo, Hb., Wang, C., Dong, Jj. et al. (2015) Reduction kinetics of iron oxide pellets with H2 and CO mixtures. Inter. J. of Minerals, Metallurgy and Materials, 22(7), 688-696. https://www.researchgate.net/ publication/282499310 https://doi.org/10.1007/s12613-015-1123-x
5. Donghui Liu, Xiaozhe Wang, Jianliang Zhang et al. (2017) Study on the controlling steps and reduction kinetics of iron oxide briquettes with CO-H2 mixtures. Metall. Res. Technol., 114(6), 611. https://www.researchgate.net/publication/320229625 https://doi.org/10.1051/metal/2017072
6. Heidari, A., Niknahad, N., Iljana, M., Fabritius, T. (2021) A review on the kinetics of iron ore reduction by hydrogen. Materials, 14(24), 7540. https://doi.org/10.3390/ma14247540
7. Patisson, F., Mirgaux, O., Birat, J.-P. (2021) Hydrogen steelmaking. Pt 1: Physical chemistry and process metallurgy. Matériaux & Techniques, 109(3-4), 303-313. https://doi.org/10.1051/mattech/2021025
8. Isnaldi, R. Souza Filho, Hauke Springer, Yan Ma et al. (2022) Green steel at its crossroads: Hybrid hydrogen-based reduction of iron ores. https://doi.org/10.1016/j.jclepro.2022.130805
9. Zabarilo, O.S., Slyshankova, V.A., Lakomsky, V.I. (1968) Behavior of oxygen in metal of melted billet at plasma-hydrogen deoxidazing. Spets. Elektrometallurgiya, 1, 128-134 [in Russian].
10. Zabarilo, O.S., Lakomsky, V.I. (1968) Hydrogen deoxidazing in plasma-arc remelting of permalloy 50Н. Spets. Elektrometallurgiya, 2, 61-69 [in Russian].
11. Zabarilo, O.S., Lakomsky, V.I. (1968) Behavior of hydrogen in plasma-arc remelting of 50H alloy and armco iron. Spets. Elektrometallurgiya, 4, 78-85 [in Russian].
12. Zabarilo, O.S. (1960) Plasma-hydrogen deoxidizing of iron, nickel and their alloys. In: Syn. of Thesis for Cand. of Techn. Sci. Degree. Kyiv, PWI [in Russian].
13. Shapovalov, V.O., Mogylatenko, V.G., Biktagirov, F.K., Kozin, R.V. (2023) Analysis of direct reduction of iron by hydrogen. In: Proc. of 15th Int. Sci.-Techn. Conf. on New Materials and Technologies in Machine-Building-2023 (Kyiv, April 27-28, 2023), 33-40. DOI: https://foundry.kpi.ua/wp-content/ uploads/2023/06/conferenziya_2023.pdf
14. Mogylatenko, V.G., Shapovalov, V.O., Biktagirov, F.K., Kozin, R.V. (2023) Thermal decomposition of hematite pellets during plasmaarc smelting in argon atmosphere. In: Proc. of 15th Int. Sci.-Techn. Conf. on New Materials and Technologies in Machine-Building- 2023 (Kyiv, April 27-28, 2023), 23-29. DOI: https://foundry.kpi.ua/wp-content/uploads/2023/06/conferenziya_2023.pdf
15. Lakomsky, V.I. (1974) Plasma-arc remelting. Kyiv, Tekhnika [in Russian].
16. Naseri Seftejani, M., Schenk, J. (2018) Reaction kinetics of molten iron oxides reduction using hydrogen. La Metallurgia Italiana, 7-8, 5-14 https://www.researchgate.net/publication/327594827
17. Grigorenko, G.M., Pomarin, Yu.M. (1989) Hydrogen and nitrogen in metals during plasma melting. Kyiv, Naukova Dumka [in Russian].
18. Paton, B.E., Grigorenko, G.M., Sheiko, I.V. et al. (2013) Plasma technologies and equipment in metallurgy and foundry. Kyiv, Naukova Dumka [in Ukrainian]

Advertising in this issue: