The Paton Welding Journal, 2012, #5, 17-25 pages
EFFECT OF STRUCTURAL-PHASE TRANSFORMATIONS IN ALUMINIUM-LITHIUM ALLOY 1460 JOINTS ON PHYSICAL-MECHANICAL PROPERTIES
L.I. MARKASHOVA, A.Ya. ISHCHENKO, O.S. KUSHNARYOVA and V.E. FEDORCHUK
E.O. Paton Electric Welding Institute, NASU, Kiev, Ukraine
Abstract
Analysis of experimental data on evaluation of mechanical properties of the alloy joints was performed by taking into account the weld metal composition, grain and sub-grain sizes, real dislocation density, volume content of phase precipitates, etc. The effect of each of the specific structural-phase parameters on mechanical characteristics of the welded joints and their change under the influence of postweld heat treatments and external loading was determined.
Keywords: heat treatment, weld metal, aluminium alloy, scandium, fine structure, phase precipitates, dislocation density, composite phase precipitates
Received: 28.11.11
Published: 28.05.12
References
1. Fridlyander, I.N., Chuistov, K.V., Berezina, A.L. et al. (1992) Aluminium-lithium alloys. Structure and properties. Kiev: Naukova Dumka.
2. Furukawa, M., Berbon, P., Horita, Z. et al. (1997) Production of ultrafine-grained metallic materials using an intense plastic straining technique. Mater. Sci. Forum, 233/234, 177-184.
3. Ryazantsev, V.I., Fedoseev, V.A. (1994) Mechanical properties of welded joints on Al-Cu system aluminium alloys. Svarochn. Proizvodstvo, 12, 4-7.
4. Tsenev, N.K., Valiev, R.Z., Obraztsov, O.V. et al. (1992) Mechanical properties of submicron grained Al-Li alloys. In: Proc. of 6th Int. Aluminium Conf. (Germany, Garmisch-Partenkirchen, Oct. 8-10, 1992), 1125-1135.
5. Ball, H.D., Lloyd, D.J. (1985) Particles apparently exhibiting fivefold symmetry in Al-Li-Cu alloys. Scr. Met., 19, 1065-1068.
6. Gayle, F.W., Vander Sande, J.B. (1984) Composite precipitates in an Al-Li-Zr alloy. Ibid., 18, 473-478.
7. Gufnghui, M., Huasyun, Y., Delin, P. et al. (2000) Fraction and phase spacing of fibrous intermetallic S-LiAl in hypoeutectic Al-Li alloys by unidirectional solidification. Metallofizika. Nov. Tekhnologii, 22(4), 58-61.
8. Furukawa, M., Miura, Y., Nemoto, M. (1987) Temperature and strain rate dependences of yield stress of an Al-Cu-Li-Mg-Zr alloy. Transact. of JIM, 28, 655-665.
9. Darovsky, Yu.F., Markashova, L.I., Abramov, N.P. et al. (1985) Method of preparation for electron-microscopic analyses. Avtomatich. Svarka, 12, 60.
10. Markashova, L.I., Grigorenko, G.M., Ishchenko, A.Ya. et al. (2006) Effect of scandium additions on structure-phase condition of weld metal produced by welding aluminium alloy 1460. The Paton Welding J., 1, 16-23.
11. Markashova, L.I., Grigorenko, G.M., Ishchenko, A.Ya. et al. (2006) Effect of scandium additions on the fine structure of weld metal in aluminium alloy 1460 welded joints. Ibid., 2, 20-25.
12. Markashova, L.I., Grigorenko, G.M., Lozovskaya, A.V. et al. (2006) Effect of scandium additions on structure-phase state of weld metal in aluminium alloy joints after heat treatment. Ibid., 6, 7-11.
13. Konrad, G. (1973) Model of strain hardening for explanation of grain size effect on metal flow stress. In: Ultrafine grain in metals. Moscow: Metallurgiya.
14. Petch, N.J. (1953) The cleavage strength of polycrystalline. J. Iron and Steel Inst., 173(1), 25-28.
15. Orowan, E. (1954) Dislocation in metals. New York: AIME.
16. Ashby, M.F. (1983) Mechanisms of deformation and fracture. Adv. Appl. Mech., 23, 118-177.
17. Kelly, A., Nicholson, R. (1966) Precipitation hardening. Moscow: Metallurgiya.
18. Romaniv, O.N. (1979) Fracture toughness of structural steels. Moscow: Metallugiya.
19. Ivanova, V.S., Gordienko, L.K., Geminov, V.N. et al. (1965) Role of dislocations in strengthening and fracture of metals. Moscow: Nauka.
Suggested Citation
L.I. MARKASHOVA, A.Ya. ISHCHENKO, O.S. KUSHNARYOVA and V.E. FEDORCHUK (2012) EFFECT OF STRUCTURAL-PHASE TRANSFORMATIONS IN ALUMINIUM-LITHIUM ALLOY 1460 JOINTS ON PHYSICAL-MECHANICAL PROPERTIES.
The Paton Welding J., 05, 17-25.