2013 №11 (16) 2013 №11 (18)

TPWJ, 2013, #10/11, 117-123 pages


Journal                    The Paton Welding Journal
Publisher                 International Association «Welding»
ISSN                      0957-798X (print)
Issue                       № 10/11, 2013 (October-November)
Pages                      117-123

A. Baikov Institute of Metallurgy and Materials Science of the RAS (Russia). 49 Leninskii avenue, 119991, Moscow, Russia. E-mail:tsvetkov@imet.ac.ru

Equipment-technological classification of plasma processes in metallurgy and material treatment is stated. It allowed evaluating the prospects of plasma process practical application and ways for structural-technological arrangement optimizing. The equipment for shaft furnaces with plasma heating and processes of plasma effect on metallurgical melts have close prototypes in classical metallurgy. Jet-plasma processes, oriented on receiving of substances in dispersed state, require development of the original equipment. The authors realized the processes of hydrogen-plasma reduction of refractory metal oxides, plasma reduction melting of oxides of iron group and production of metal compounds (carbides, nitrides, oxides, etc.) allowing manufacture of products in a form of dispersed powders. They differ by possibility of energy- and resource saving, receiving of products with specific service properties and environmental compatibility. Proposed is a concept of modular energy-technological complex joining energy generation and chemical-metallurgical production of metals, steels and alloys from natural and technogenic raw materials on plasma method basis. Such pollution-free complex allows reducing energy- and resource consumption. 15 Ref., 10 Figures.

Keywords: jet-plasma processes, dispersed powders, plasma-chemical installation, tungsten, energy- and resource saving, energy-technological complex, plasma-arc liquid-phase reduction of iron

Received:                11.07.13
Published:               06.11.13

1. Rykalin, N.N. (1947) Thermal principles of welding. Moscow: AN SSSR.
2. Rykalin, N.N. (1951) Calculations of thermal processes in welding. Moscow: Mashgiz.
3. Tsvetkov, Yu.V., Panfilov, S.A. (1980) Low-temperature plasma in reduction processes. Moscow: Nauka.
4. Tsvetkov, Yu.V. (1981) Ways of intensification of reduction processes in terms of adsorption catalytic representations. Physical chemistry of metal oxides. Moscow: Nauka.
5. Tsvetkov, Yu.V. (1985) Specifics of thermodynamics and kinetics of plasma-metallurgical processes. Moscow: Nauka.
6. Tsvetkov, Yu.V. (1999) Plasma metallurgy. Current state, problems and prospects. Pure and Applied Chemistry, 71(10), 1853-1862.
7. Tsvetkov, Yu.V., Nikolaev, A.V., Panfilov, S.A. (1992) Plasma metallurgy. Novosibirsk: Nauka.
8. Tsvetkov, Yu.V. (2006) Physical chemistry of plasma metallurgy. Tekhnologiya Metallov, 4, 7-14.
9. Kalamazov, R.U., Tsvetkov, Yu.V. (1988) Finely-dispersed powders of tungsten and molybdenum. Moscow: Metallurgiya.
10. Tsvetkov, Yu.V. (2006) Thermal plasma in nanotechnologies. Nauka v Rossii, 2, 4-9.
11. Samokhin, A.V., Alekseev, N.V., Tsvetkov, Yu.V. (2006) Plasma-chemical processes of development of nanodispersed powder materials. Khimiya Vysokikh Energij, 40(2), 120-126.
12. Tsvetkov, Yu.V., Samokhin, A.V. (2008) Plasma nanopowder metallurgy. The Paton Welding J., 11, 149-152.
13. Astashov, A.G., Samokhin, A.V., Tsvetkov, Yu.V. et al. (2012) Heat-and-mass transfer in plasma reactor with limited jet flow in producing of nanopowders. Khimiya Vysokikh Energij, 46(4), 327-330.
14. Tsvetkov, Yu.V., Nikolaev, A.V. (2006) Plasma processes in composition of power-metallurgical complex (some problems of metallurgy of future). Resursy. Tekhnologiya. Ekonomika, 2, 20-26; 3, 38-42.
15. Nikolaev, A.V., Kirpichyov, D.E., Nikolaev, A.A. et al. (2012) Energy efficient application of plasma furnace in reduction of titaniferous magnetite concentrate. Glavny Energetik, 3, 26-36.