2020 №12 (01) DOI of Article
2020 №12 (03)

The Paton Welding Journal 2020 #12
The Paton Welding Journal, 2020, #12, 15-20 pages

Mechanical properties of joints of 1460 aluminium alloy, produced by electron beam welding using filler material from 1201 alloy

V.V. Skryabinskyi, V.M. Nesterenkov and V.R. Strashko

E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail:

The paper presents the results of studying mechanical properties of joints of 1460 alloy and joints of 1460 + 1201 dissimilar alloys, produced by EBW at room and cryogenic temperatures. It is shown that the strength of joints of 1460 alloy, welded using filler material from 1201 alloy at a temperature of 77 K rises by 10 %, and at a temperature of 20 K — by 20 % as compared to the joints welded without using filler material. Mechanical properties of welded joints of 1460 + 1201 dissimilar alloys at the test temperatures of 20, 77 and 293 K are on the level not lower than those of the joints of 1460 alloy, welded with the application of 1201 filler material. Welding technology is described and chemical composition of weld metal is given. 12 Ref., 3 Tables, 9 Figures.
Keywords: electron beam welding, aluminium-lithium alloys, filler material, mechanical properties, welded joints, cryogenic temperatures

Received 29.11.2020


1. Antipov, V.V., Vakhromov, R.O., Oglodkov, M.S. et al. (2016) Welded aluminium-lithium alloys of third generation. Role of fundamental studies in realization of strategic directions of development of materials and technologies of their processing for the period up to 2030. In: Proc. of 3rd All-Russian Sci.-Tekhn. Conf. FGUP VIAM, 2-17 [in Russian]. 0%D0%9C-2016%D1%84%D0%BC%D0%BC.pdf
2. Limarenko, A.L., Sigalo, V.G., Litvishko, T.L. (2002) Properties and structure of high-strength welded aluminium-lithium alloy 1460. Kosmichna Nauka i Tekhnologiya, Dodatok, 8, 1, 123-126 [in Russian].
3. Maslov, G.G., Makarov, G.S. (1991) Aviation metallurgy in 39th International Show of Aerospace Engineering. Tekhnologiya Lyogkikh Splavov, 12, 109-116 [in Russian].
4. Drits, A.M., Krymova, T.V. (1996) Russian high-strength welded aluminium-lithium alloy of 1460 grade. Tsvetnye Metally, 3, 68-73 [in Russian].
5. Kablov, E.N. (2018) The future of aviation belongs to aluminium-lithium alloys. Redkie Zemli, 2 June 2018 [in Russian].
6. Makhin, I.D., Nikolaev, V.V., Petrovichev, P.S. (2014) Investigation of weldability of V-1469 and 01570S alloys using electron beam welding for design of advanced manned spaceship. Kosmicheskaya Tekhnika i Tekhnologii, 4, 7, 68-75 [in Russian].
7. Ovchinnikov, V.V., Drits, A.M., Kurbatova, I.A., Gureeva, M.A. (2017) Technology of welding of aluminium wrought alloy 1151. Naukoyomkie Tekhnologii v Mashinostroenii, 1, 10-15 [in Russian].
8. Labur, T.M., Grinyuk, A.A., Poklyatsky, A.G. (2006) Mechanical properties of plasma welded joints on aluminium- lithium alloys. The Paton Welding J., 6, 32-34.
9. Ramulu, M., Rubbert, M.P. (1990) Gas tungsten arc welding of Al-Cu-Li alloy. Welding Research Suppl., March, 109-114.
10. Fridlyander, I.N., Drits, A.M., Krymova, T.V. (1991) Possibility of development of welded alloys based on Al-Cu-Li system. Metallovedenie i Termich. Obrab. Metallov, 9 [in Russian].
11. Bondarev, A.A., Skryabinsky, V.V., Peshcherina, S.V., Butkova, E.I. (1991) Peculiarities of electron beam welding of high-strength alloy of aluminium-copper-lithium system. Avtomatich. Svarka, 7, 37-40 [in Russian].
12. Skryabinskyi, V.V., Nesterenkov, V.M., Rusynyk, M.O. (2020) Electron beam welding with programming of beam power density distribution. The Paton Welding J., 1, 51-56.