Позорная война рф против Украины

Начата 20 февраля 2014 и полномасштабно продолжена 24 февраля 2022 года. С первых же минут рф ведет ее с нарушением законов и правил войны, захватывает атомные станции, уничтожает бомбардировками мирное население и объекты критической инфраструктуры. Правители и армия рф - военные преступники. Все, кто платит им налоги или оказывают какую-либо поддержку - пособники терроризма. Народ Украины вас никогда не простит и ничего не забудет.

2021 №05 (07) DOI of Article
2021 №05 (09)

The Paton Welding Journal 2021 #05
TPWJ, 2021, #5, 46-50 pages

Calculation of residual stress-strain state of deposited steel sheet plates

I.K. Senchenkov1, I.O. Ryabtsev2, O.P. Chervinko1 and A.A. Babinets2
1S.P. Timoshenko Institute of Mechanics of the NAS of Ukraine 3 Nesterov Str., 02000, Kyiv, Ukraine
2E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

Finite-element calculation procedure was developed and stress-strain and microstructural state was studied at singleand two-layer surfacing of 3 mm sheets from St3 steel by Sv-Kh19N18G6M3V2, PP-Np-25Kh5FMS and Sv-08A wires. Calculations of SSS, microstructural state and shape change of the sheets at surfacing under the smooth support conditions were performed. The model of plane-deformation state (PDS) predicts greater deflections, compared to the model of plane-stress state (PSS), except for materials with martensite transformations (PP-Np-25Kh5FMS). At surfacing by materials with martersite transformations, greater deflections are in place due to volumetric effects of transformation. Except for deposited metal with martensite transformations (25Kh5FMS), the model of simultaneous deposition of a layer predicts greater deflection, compared to that of bead-by-bead deposition and it can be used for assessment of upper deflection limit. Satisfactory correlation was obtained for calculated and experimental data on surfaced sheet deflections. Rational schemes of supporting and fastening the element edges were determined, which provide minimum residual deflections. Ref. 7, 1 Table, 7 Figures.
Keywords: arc surfacing, stress-strain state, surfaced sheet deformations, Bodner–Partom model, deflection calculation procedure

Received 19.04.2021


1. Senchenkov, I.K. (2005) Thermomechanical model of growing of cylindrical bodies from nonlinear materials. Prikl. Mekhanika, 41(9), 118-126 [in Russian]. https://doi.org/10.1007/s10778-006-0013-3
2. Ryabtsev, I.A., Senchenkov, I.K., Turyk, E.V. (2015) Surfacing. Materials, technologies, mathematical modeling. Gliwice, Silesia Polytechn. In-te, 44-100 [in Polish]. https://doi.org/10.15407/tpwj2015.06.29
3. Ryabtsev, I.A., Senchenkov, I.K. (2013) Theory and practice of surfacing works. Kyiv, Ekotekhnologiya [in Russian].
4. Bodner, S.R. (2000) Unified plasticity — an engineering approach. Final Rep. Technion. Israel Inst. of Tech., Haifa.
5. Popov, A.A., Popov, A.E. (1961) Isothermal and thermokinetic diagrams of overcooled austenite decomposition: Refer. Book of heat-treater. Moscow-Sverdlovsk. GNTI Mashlit [in Russian].
6. Shorshorov, M.Kh., Belov, V.V. (1972) Phase transformations and change of steel properties in welding: Atlas. Moscow, Nauka [in Russian].
7. Motovilovets, I.A., Kozlov, V.I. (1987) Mechanics of related fields in materials and structure elements. In: 5 Vol., Vol. 1: Thermoelasticity. Kiev, Naukova Dumka [in Russian].

Advertising in this issue: