Позорная война рф против Украины

Начата 20 февраля 2014 и полномасштабно продолжена 24 февраля 2022 года. С первых же минут рф ведет ее с нарушением законов и правил войны, захватывает атомные станции, уничтожает бомбардировками мирное население и объекты критической инфраструктуры. Правители и армия рф - военные преступники. Все, кто платит им налоги или оказывают какую-либо поддержку - пособники терроризма. Народ Украины вас никогда не простит и ничего не забудет.

2021 №11 (02) DOI of Article
2021 №11 (04)

The Paton Welding Journal 2021 #11
TPWJ, 2021, #11, 15-21 pages

Application of SLM-technology for manufacture of dental implants from Ti–6Al–4V alloy

S.V. Adjamskyi1, G.A. Kononenko2, R.V. Podolskyi2
1LLC “Additive Laser Technology of Ukraine” 144 Rybinska Str., 49000, Dnipro, Ukraine
2Z.I. Nekrasov Iron & Steel Institute of the NASU 1 Sq. Academician Starodubov, 49000, Dnipro, Ukraine 11 Kazy

Nowadays, SLM-technology has found application in various fields, including dental. The manufacture of dental implants by SLM has significant advantages. The aim of the work was the development and manufacture of equipment, practicing printing conditions by SLM technology and electrochemical polishing of dental implants with Ti–6Al–4V. The titanium Ti–6Al–4V alloy of the chemical composition, wt.%: 6.21 Al; 4.03 V; 0.04 Fe; 0.1 C; 0.7 O; 0.02 N; Ti – base, was used. The source material was examined using a scanning electron microscope REM-106 and microstructure was examined by CarlZeiss AxioVert 200M mat. The mass control was performed by the analytical scales ADV-2000. Electrochemical polishing was performed in a solution of hydrofluoric acid (HF), nitric acid (HNO3) with glycerol (C3H8O3). The ultra-compact 3D printer Alfa-150D with a working field size of 150×150×180 mm was designed and manufactured. The printer is equipped with a high-precision ytterbium laser with air cooling of 200 W power. The positioning accuracy of the laser beam is 0.15 μm. The thickness of the working layer is 20‒100 μm. The samples of implants from Ti–6Al–4V were made according to experimental technological conditions: constant laser power — 195 W, laser beam scanning speed — 1000‒1200 mm/s with a step of 50 mm/s, distance between beam passes — 0.09–0.12 mm with a step of 0.01 mm at a constant scanning speed. The set conditions: laser power — 195 W, scanning speed — 1000 mm/s and distance between tracks — 0.12 mm provide the density of metal samples of more than 99.99 %. On the implants manufactured according to the recommended conditions, the effect of current (0.5‒2.5 A), voltage (12‒20 V) and duration (3‒6 min) on mass loss during electrochemical polishing was investigated. Rational conditions of posttreatment were established with the use of visual analysis. Rational conditions (current — 2 A, voltage — 17 V) of electrochemical polishing of dental implants for reduction of roughness and during maintenance of accuracy of geometry in the field of a thread were established. The dependence of mass loss of dental implants during electrochemical polishing depending on the duration of treatment was established.
Keywords: selective laser melting, titanium alloy, dental implant, equipment development

Received 17.09.2021
Accepted: 29.11.2021


1. Adjamskiy, S.V., Kononenko, G.A., Podolskyi, R.V. (2020) Influence of technological parameters of SLM-process on porosity of metal products. The Paton Welding J., 10, 13-18. https://doi.org/10.37434/as2020.10.03
2. Adjamskiy, S.V., Kononenko, G.A., Podolskyi, R.V. (2020) Prospects for application of additives technologies in aircraft and rocket production. Aviats.-Kosmich. Tekhnika i Tekhnologiya, 7(167), 59-65 [in Russian]. DOI: https://doi. org/10.32620/aktt.2020.7.09.]
3. Adzhamskіy, S.V., Kononenko, H.A., Podolskyi, R.V. (2021) Analysis of structure after heat treatment of Inconel 718 heat-resistant alloys made by SLM-technology. Metallofiz. Noveishie Tekhnol., 43(7), 909-924 [in Ukrainian] https://doi.org/10.15407/mfint.43.07.0909
4. (2021) Additive Laser Technology. https://alt-print.com/uk/medicine
5. Lukyanchenko, V.V., Malyasova, M.G. (2010) Metals in implantology. Ortopediya, Travmatologiya i Protezirovanie, 3, 130-132 [in Russian]. https://doi.org/10.15674/0030-598720103130-132
6. Rozenberg, O.A., Shejkin, S.E., Sokhan, S.V. (2010) Prospects of application of commercially pure titanium for implants of osseous surgery. Novi Materialy i Tekhnologii v Mashynobuduvanni, 2, 50-54 [in Russian].
7. Dolgalev, A.A., Svyatoslavov, D.S., Put, V.A. et al. (2019) Morphological assessment of osteointegration at substitution of defect of lower jaw by implants made using additive technologies: Experimental study. Meditsinskii Alfavit. Seriya Stomatologiya, Vol. 1, 5(380), 63-68 [in Russian]. https://doi.org/10.33667/2078-5631-2019-1-5(380)-63-68
8. Vasilyuk, V.P., Shtraube, G.I., Chetvertnykh, V.A. (2013) Application of additive technologies in restoration of defects of facial skeleton. Permskij Meditsinskij Zhurnal, 30(3), 60-65 [in Russian].
9. Khrapov, D., Surmeneva, M.A. (2019) Study of mechanical properties of composite based on mash scaffold made of Ti-6Al-4V alloy using the method of additive technologies and polycaprolactone. In: Proc. of 16th Int. Conf. of Students, Graduate Students and Young Scientists on Prospects of Fundamental Sciences Development (Tomsk, 23-26 April, 2019). Tomsk, TPU, Vol.1: Physics, 346-248.
10. Topolsky, V.F., Akhonin, S.V., Grigorenko, G.M., Petrichenko, I.K. (2012) Development of new titanium bio-compatible alloys for medical application. Sovrem. Elektrometall., 1, 106, 22-25 [in Russian[.
11. Kahlin, M. (2017) Fatigue performance of additive manufactured Ti6Al4V in aerospace applications. 15: Licentiate Thesis, 1775, 71. https://doi.org/10.3384/lic.diva-137233
12. Adjamskiy, S.V., Kononenko, G.A., Podolskyi, R.V., Badyuk, S.I. (2021) Examination of efficiency of electrochemical polishing of variable cross-section samples with different rigidity from AISI 316L steel made using SLM technology. Aviats.- Kosmich. Tekhnika i Tekhnologiya, 2(170), 66-73 [in Ukrainian]. https://doi.org/10.32620/aktt.2021.2.08
13. Łyczkowska-Widłak, E., Lochy ́nski, P., Nawrat, G. (2020) Electrochemical polishing of austenitic stainless steels. Materials, 13(11. https://doi.org/10.3390/ma13112557
14. Adjamskiy, S.V., Kononenko, G.A., Podolskyi, R.V. (2021) Improving the efficiency of the SLM-process by adjusting the focal spot diameter of the laser beam. The Paton Welding J., 5, 18-23. https://doi.org/10.37434/as2021.05.01
15. Khorasani, A., Gibson, I., Kozhuthala, J. Veetil, Ghasemi, A.H. (2020) A review of technological improvements in laser-based powder bed fusion of metal printers. Int. J. Adv. Manuf. Technol., 108, 191-209. https://doi.org/10.1007/s00170-020-05361-3
16. (2019) Periodontal Associate LLC. Same-Day Dental Implants. Periodontal Associate LLC. Periodontal Associate. https://www.periodontalassociatesnj.com/dentistry/dental-implants/same-day-dental-implants.
17. Gurin, P.A., Skorik, N.A. (2018) Comparative morphological and chemical analysis of surface of helical dental implants of AnyOne system ( South Korea), Biohorisons (USA) and INO (Israel), Radix-Oston (Belarus) and Radix-Balance (Belarus). Transact. of NMAPO, Ukraine. Ed. by Yu.V. Voronenkov. Kyiv, 133-156 [in Ukrainian].
18. Edwards, P., Ramulu, M. (2014) Fatigue performance evaluation of selective laser melted Ti-6Al-4V. Mater. Sci. and Engineering: A 598, 327-337. https://doi.org/10.1016/j.msea.2014.01.041

Advertising in this issue: