Eng
Ukr
Rus


Позорная война рф против Украины

Начата 20 февраля 2014 и полномасштабно продолжена 24 февраля 2022 года. С первых же минут рф ведет ее с нарушением законов и правил войны, захватывает атомные станции, уничтожает бомбардировками мирное население и объекты критической инфраструктуры. Правители и армия рф - военные преступники. Все, кто платит им налоги или оказывают какую-либо поддержку - пособники терроризма. Народ Украины вас никогда не простит и ничего не забудет.
Триває друк

2022 №06 (04) DOI of Article
10.37434/as2022.06.05
2022 №06 (01)

Автоматичне зварювання 2022 #06
Журнал «Автоматичне зварювання», № 6, 2022, с. 36-48

Сучасні технологічні прийоми зварювання тиском магнієвих сплавів (Огляд)

Ю.В. Фальченко, Л.В. Петрушинець
ІЕЗ ім. Є.О. Патона НАН України. 03150, м. Київ, вул. Казимира Малевича, 11. E-mail: office@paton.kiev.ua

На підставі результатів літературного аналізу показана перспективність використання методів зварювання тиском: дифузійного, ультразвукового, прокаткою при з’єднанні елементів зі сплавів магнію. Проведено порівняльну оцінку режимів зварювання. Визначено основні напрями для отримання бездефектних з’єднань. Показано, що основними шляхами удосконалення процесів зварювання є застосування наступних підходів: контроль температурно-часових параметрів зварювання, використання проміжних прошарків у вигляді окремих шарів з однорідних матеріалів на основі міді, нікелю, цинку або срібла, або евтектичних сумішей, зміцнення стику за рахунок використання нано- або дрібнодисперсних часток; інтенсифікація пластичної деформації за рахунок накладення ультразвукових коливань; збільшення інтенсивності пластичної деформації, а також застосування термічної обробки до і після зварювання. Бібліогр. 31, табл. 1, рис. 10.
Ключові слова: магнієві сплави, зварні з’єднання, мікроструктура, міцність, дифузійне зварювання, ультразвукове зварювання, зварювання прокаткою


Надійшла до редакції 18.04.2022

Список літератури

1. Stefano Gialanella, Alessio Malandruccolo. (2020) Aerospace Alloys. Springer, Cham.
2. Colleen Bettles, Matthew Barnett. (2012) Advances in wrought magnesium alloys. Fundamentals of processing, properties and applications. Woodhead Publishing Limited.
3. Min, D., Shen, J., Lai, S., Chen, J. (2009). Effect of heat input on the microstructure and mechanical properties of tungsten inert gas arc butt-welded AZ61 magnesium alloy plates. Materials Characterization, 60, 12, 1583–1590. DOI:10.1016/j.matchar.2009.09.010
4. Abbas, M., Khan, A., Ali, M. et al. (2014) Effect of weld current and weld speed on the microstructure and tensile properties of magnesium alloy specimens during tungsten inert gas. Technical Journal, University of Engineering and Technology Taxila, 19, II, 35–39.
5. Hidetoshi Somekawa, Hiroyuki Hosokawa, Hiroyuki Watanabe, Kenji Higashi (2001) Experimental Study on Diffusion Bonding in Pure Magnesium. Materials Transactions, 42, 10, 2075–2079. DOI: https://doi.org/10.2320/matertrans.42.2075
6. Hidetoshi Somekawa, Hiroyuki Hosokawa, Hiroyuki Watanabe, Kenji Higashi (2003) Diffusion bonding in superplastic magnesium alloys. Materials Science and Engineering A, 339, 328–333. DOI: https://doi.org/10.1016/S0921-5093(02)00127-2
7. Hidetoshi Somekawa, Hiroyuki Watanabe, Toshiji Mukai, Kenji Higashi (2003) Low temperature diffusion bonding in a superplastic AZ31 magnesium alloy. Scripta Materialia, 48, 1249–1254. DOI: https://doi.org/10.1016/S1359-6462(03)00054-X
8. Hidetoshi Somekawa, Hiroyuki Watanabe, Kenji Higashi (2003) The Grain Size Dependence on Diffusion Bonding Behavior in Superplastic Mg Alloys. Materials Transactions, 44, 4, 496–503. DOI: https://doi.org/10.2320/matertrans.44.496
9. Fei, Lin, Tiepeng, Li, Lulu, Sun, Qingsen, Meng. (2012) A study on vacuum diffusion bonding of as-extruded AZ31 magnesium alloy. Applied Mechanics and Materials, 121–126, 10–14. DOI: https://doi.org/10.4028/www.scientific.net/AMM.121-126.10
10. Yu Yandong, Li Qiang (2005) Diffusion Bonding in Superplastic ZK60 Magnesium Alloy. Materials Science Forum, 488–489, 227–230. DOI: https://doi.org/10.4028/www.scientific.net/MSF.488-489.227
11. Fei, Lin, Jie, Li, Hongwei, Zhao et al. (2013) Experimental Research on Vacuum Diffusion Bonding of As-extruded AZ61 Magnesium Alloy. Advanced Materials Research, 788, 34–37. DOI: https://doi.org/10.4028/www.scientific.net/AMR.788.34
12. Fei Lin, YaXin Tian, ZhiTong Chen et al. (2015) Diffusion Bonding and Post-Weld Heat Treatment of Extruded AZ91 Magnesium Alloys. Materials Science (Medžiagotyra), 21, 4, 532–535. DOI: https://doi.org/10.5755/j01.ms.21.4.9699
13. Zhang Weixiang, Du Shuangmin (2013) Investigation into Cu-interlayered Diffusion Bonding Trial of AZ31B Alloy. Advanced Materials Research, 631–632, 167–171. DOI: https://doi.org/10.4028/www.scientific.net/AMR.631-632.167
14. Sun, D.Q., Liu, W.H., Gu, X.Y. (2004) Transient liquid phase bonding of magnesium alloy (Mg – 3Al – 1Zn) using copper interlayer. Materials Science and Technology, 20, 12, 1595–1598. DOI: https://doi.org/10.1179/174328413X13789824293506
15. Abdulaziz Nasser AlHazaa, Muhammad Ali Shar, Anas Mahmoud Atieh, Hiroshi Nishikawa (2018) Transient Liquid Phase Bonding of Magnesium Alloy AZ31 Using Cu Coatings and Cu Coatings with Sn Interlayers. Metals, 8, 60–69. DOI: https://doi.org/10.1016/j.jksus.2015.09.006
16. Dehnavi, F., Bakhtiari, R. (2021) Effect of microstructure aspects on mechanical properties of nanoparticle-assisted transient liquid phase (NP-TLP) joints for AZ31 alloy. Journal of Manufacturing Processes, 68, 42–55. DOI: https://doi.org/10.1016/j.jmapro.2021.05.032
17. Sohrab Ghahri Saremi, Seyyed Ehsan Mirsalehi, Ali Shamsipur (2018) Transient liquid phase bonding of AZ31 magnesium alloy: Metallurgical structure and mechanical properties. Ibid, 35, 140–148. DOI: https://doi.org/10.1016/j.jmapro.2018.08.002
18. Torun, O., Karabulut, A., Baksan, B., Çelikyürek, I. (2008) Diffusion bonding of AZ91 using a silver interlayer. Materials and Design, 29, 2043–2046. DOI: https://doi.org/10.1016/j.matdes.2008.04.003
19. Reza Ghavami, Ayoub Halvaee, Amir Hadian (2019) Effect of bonding temperature on interface properties of AZ31 magnesium alloys joined by transient liquid phase using silver interlayer. Materials Research Express, 6, 116519, Р. 1–9. DOI: https://doi.org/10.1088/2053-1591/ab44df
20. Jin, Y.J., Khan, T.I. (2012) Effect of bonding time on microstructure and mechanical properties of transient liquid phase bonded magnesium AZ31 alloy. Materials and Design, 38, 32–37. DOI: https://doi.org/10.1016/j.matdes.2012.01.039
21. AlHazaa A.N., Khalil Abdelrazek Khalil, Muhammad A. Shar (2016) Transient liquid phase bonding of magnesium alloys AZ31 using nickel coatings and high frequency induction heat sintering. Journal of King Saud University – Science, 28, 152–159. DOI: https://doi.org/10.1016/j.jksus.2015.09.006
22. Ramanujam, N., Rajamuthamilselvan, M., Girish, G. (2016) Investigation on Mechanical Properties of Diffusion Bonded AZ-91 Magnesium Alloy Reinforced with Sic Particles. International Journal of Engineering Research & Technology (IJERT), 5, 12, 159–166.
23. Ren, L., Li, B., Chen, Z. et al. (2021) Interfacial Microstructure Analysis of AZ31 Magnesium Alloy during Plastic Deformation Bonding. Processes, 9, 1857–1867. DOI: https://doi.org/10.3390/pr9101857
24. Lingxiao Ouyang, Yunwei Gui, Quanan Li, Yunqiang Fan (2021) Isothermal compression bonding mechanism and mechanical properties of WE43 magnesium-rare earth alloy. Materials Science & Engineering A, 822, 141664, 1–12. DOI: https://doi.org/10.1016/j.msea.2021.141664
25. Lai Zhiwei, Chen Xiaoguang, Pan Chuan et al. (2016) Joining Mg alloys with Zn interlayer by novel ultrasonic assisted transient liquid phase bonding method in air. Materials Letters, 166, 219–222. DOI: https://doi.org/10.1016/j.matlet.2015.11.031
26. Zhiwei Lai, Ruishan Xie, Chuan Pan et al. (2017) Ultrasoundassisted Transient Liquid Phase Bonding of Magnesium Alloy Using Brass Interlayer in Air. Journal of Materials Science & Technology, 33, 6, 567–572. DOI: https://doi.org/10.1016/j.jmst.2016.11.002
27. Zhiwu, Xu, Zhengwei, Li, Liming, Peng, Jiuchun, Yan (2019) Ultra-rapid transient liquid phase bonding of Mg alloys within 1 s in air by ultrasonic assistance. Materials and Design, 161, 72–79. DOI: https://doi.org/10.1016/j.matdes.2018.11.015
28. Zhiwu Xu, Shu Chen, Liming Peng et al. (2020) Microstructure evolution and mechanical properties of ultrasonically TLP bonded Mg joint. Journal of Manufacturing Processes, 52, 145–151. DOI: https://doi.org/10.1016/j.jmapro.2020.01.056
29. Xixin Rao, Yunpeng Wu, Xiaobing Pei et al. (2019) Influence of rolling temperature on microstructural evolution and mechanical behavior of AZ31 alloy with accumulative roll bonding. Materials Science & Engineering A, 754, 112–120. DOI: https://doi.org/10.1016/j.msea.2019.03.047
30. Akhmad Saufan, Ing-Song Yu, Jian-Yih Wang (2020) Enhancement of mechanical properties for Mg–9Li–1Zn alloy by accumulative roll bonding. Materials Research Express, 7, 046511, 1–8. DOI: https://doi.org/10.1088/2053-1591/ab86f8
31. Zuzanka Trojanová, Ján Džugan, Kristýna Halmešová et al. (2018) Influence of Accumulative Roll Bonding on the Texture and Tensile Properties of an AZ31 Magnesium Alloy Sheets. Materials, 11,

Реклама в цьому номері: