The Paton Welding Journal, 2020, #7, 11-22 pages
Hybrid welding of aluminium 1561 and 5083 ALLOYS USING Plasma-arc and consumable electrode arc (plasma-MIG)
O.A. Babych1, V.M. Korzhyk2, А.А. Grynyuk2, V.Yu. Khaskin2, Chunlin Dong1 and Shanguo Han1
1Guangdong Institute of Welding (China-Ukraine E.O. Paton Institute of Welding)
363 Chiansin Str., 510650, Guangzhou, Tianhe
2E.O. Paton Electric Welding Institute of the NAS of Ukraine
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
Abstract
In the article it is shown that to improve mechanical properties and decrease indices of stress-strain state of welded
joints of alloyed aluminium 1561 and 5083 alloys it is rational to apply hybrid plasma-arc welding using arc of the consumable
electrode, which as compared to traditional welding using arc of the consumable electrode allows reducing the
electrode wire consumption by 10−30 %, input energy — up to 25 %, residual deformations — by 2−3 times, residual
stresses — by about 20 % according to the absolute values, as well as reducing burnout of such alloying element as Mg
by 15−20 %. 19 Ref., 6 Tables, 9 Figures.
Keywords: hybrid plasma-arc welding using consumable electrode (Plasma-MIG), pulsed-arc welding using consumable
electrode (MIG), surfacing welds, butt welds, strength, burnout of alloying elements, stress-strain state
Received 11.06.2020
References
1. Korzhyk, V., Khaskin, V., Perepychay, A. et al. (2020) Forecasting the results of hybrid laser-plasma cutting of carbon steel. Eastern-European J. of Enterprise Technologies, 1/2, 104, 6-15.
https://doi.org/10.15587/1729-4061.2020.1998302. Adrianus Christinus Henricus Jozef Liei`kens, Wilhelmus Gerardus Essers (1971) Method of and device for plasma arc welding. U.S. Philips Corporation. Pat. 3,612,807 US, B23k9/00.
3. Ton, H. (1975) Physical properties of the plasma-MIG welding arc. J. of Physics D: Applied Physics, 8, 922-933.
https://doi.org/10.1088/0022-3727/8/8/0064. Matthes, K.-J., Kusch, M. (2000) Plasma-MIG-Scheißen. Praktiker, 5, 182-188.
5. (2007) Hybrid Welding: An alternative to SAW. Welding J., 10, 42-45.
6. Shchitsyn, Yu.D., Tytkin, Yu.M. (1986) Consumable electrode plasma welding of aluminium alloys. Svarochn. Proizvodstvo, 5, 1-2 [in Russian].
7. Shchitsyn, Yu.D., Shchitsyn, V.Yu., Herold, H. et al. (2003) Plasma welding of aluminium alloys. Ibid., 5, 36-42 [in Russian].
8. Bai, Yan, Gao, Hong-Ming, Qiu, Ling (2010) Droplet transition for plasma-MIG welding on aluminium alloys. Trans. Nonferrous Met. Soc. China, 20, 2234-2239.
https://doi.org/10.1016/S1003-6326(10)60634-69. Tiago Vieira da Cunha, Jair Carlos Dutra (2007) Processo Plasma-MIG - Contribuição do Arco Plasma na Capacidade de Fusão do Arame. Soldagem Insp. São Paulo, 12, 2, 89-96.
10. Grinyuk, A.A., Korzhik, V.N., Shevchenko, V.E. et al. (2016) Hybrid technologies of welding aluminium alloys based on consumable electrode arc and constricted arc. The Paton Welding J., 5-6, 98-103.
https://doi.org/10.15407/tpwj2016.06.1711. Hee-Keun, Lee, Kwang-San, Chun, Sang-Hyeon, Park, Chung-Yun, Kang (2015) Control of surface defects on plasmaMIG hybrid welds in cryogenic aluminum alloys. Int. J. Nav. Archit. Ocean Eng, 7, 770-783.
https://doi.org/10.1515/ijnaoe-2015-005412. Sydorets, V., Korzhyk, V., Khaskin, V. et al. (2017) On the Thermal and Electrical Characteristics of the Hybrid Plas ma-MIG Welding Process. Materials Science Forum, ISSN: 1662-9752, 906, 63-71.
https://doi.org/10.4028/www.scientific.net/MSF.906.6313. Goldak, J.A., Akhlaghi, M. (2005) Computational welding mechanics. O., USA.
14. Bofang, Zhu. (2018) The Finite Element Method: Fundamentals and Applications in Civil, Hydraulic, Mechanical and Aeronautical Engineering - John Wiley & Sons Singapore Pte. Ltd.
https://doi.org/10.1002/978111910732315. Khaskin, V.Yu., Korzhyk, V.M., Peleshenko, S.Y., Wu, Boyi (2015) Evaporation of alloying elements in the material to be welded using laser radiation. First Independent Scientific J., 3, 108-114.
16. Wang, J., Nishimura, H., Katayama, S., Mizutani, M. (2011) Evaporation phenomena of magnesium from droplet at welding wire tip in pulsed MIG arc welding of aluminium alloys. Sci. Technol. Weld. Join., 16, 418-425.
https://doi.org/10.1179/1362171810Y.000000003017. Lobanov, L.M., Pivtorak, V.A., Savitsky, V.V., Tkachuk, G.I. (2006) Procedure for determination of residual stresses in welded joints and structural elements using electron speckleinterferometry. The Paton Welding J., 1, 24-29.
18. Korzhik, V.N., Pashchin, N.A., Mikhoduj, O.L. et al. (2017) Comparative evaluation of methods of arc and hybrid plasmaarc welding of aluminum alloy 1561 using consumable electrode. Ibid, 4, 32-37.
https://doi.org/10.15407/as2017.04.0619. Korzhyk, V.N., Kvasnytskyi, V.V., Khaskin, V.Yu. (2017) Influence of rigid restraint on formation of residual stressstrain state of plate butt joints from 1561 alloy in MIG, PAW and hybrid PAW-MIG welding. American Scientific J., 17, 1, 14-29.
Suggested Citation
O.A. Babych, V.M. Korzhyk, А.А. Grynyuk, V.Yu. Khaskin, Chunlin Dong and Shanguo Han (2020) Hybrid welding of aluminium 1561 and 5083 ALLOYS USING Plasma-arc and consumable electrode arc (plasma-MIG).
The Paton Welding J., 07, 11-22.