Print

2020 №07 (01) DOI of Article
10.37434/tpwj2020.07.02
2020 №07 (03)

The Paton Welding Journal 2020 #07
The Paton Welding Journal, 2020, #7, 11-22 pages
 

Hybrid welding of aluminium 1561 and 5083 ALLOYS USING Plasma-arc and consumable electrode arc (plasma-MIG)

O.A. Babych1, V.M. Korzhyk2, А.А. Grynyuk2, V.Yu. Khaskin2, Chunlin Dong1 and Shanguo Han1


1Guangdong Institute of Welding (China-Ukraine E.O. Paton Institute of Welding) 363 Chiansin Str., 510650, Guangzhou, Tianhe
2E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

Abstract
In the article it is shown that to improve mechanical properties and decrease indices of stress-strain state of welded joints of alloyed aluminium 1561 and 5083 alloys it is rational to apply hybrid plasma-arc welding using arc of the consumable electrode, which as compared to traditional welding using arc of the consumable electrode allows reducing the electrode wire consumption by 10−30 %, input energy — up to 25 %, residual deformations — by 2−3 times, residual stresses — by about 20 % according to the absolute values, as well as reducing burnout of such alloying element as Mg by 15−20 %. 19 Ref., 6 Tables, 9 Figures.
Keywords: hybrid plasma-arc welding using consumable electrode (Plasma-MIG), pulsed-arc welding using consumable electrode (MIG), surfacing welds, butt welds, strength, burnout of alloying elements, stress-strain state

Received 11.06.2020

References

1. Korzhyk, V., Khaskin, V., Perepychay, A. et al. (2020) Forecasting the results of hybrid laser-plasma cutting of carbon steel. Eastern-European J. of Enterprise Technologies, 1/2, 104, 6-15. https://doi.org/10.15587/1729-4061.2020.199830
2. Adrianus Christinus Henricus Jozef Liei`kens, Wilhelmus Gerardus Essers (1971) Method of and device for plasma arc welding. U.S. Philips Corporation. Pat. 3,612,807 US, B23k9/00.
3. Ton, H. (1975) Physical properties of the plasma-MIG welding arc. J. of Physics D: Applied Physics, 8, 922-933. https://doi.org/10.1088/0022-3727/8/8/006
4. Matthes, K.-J., Kusch, M. (2000) Plasma-MIG-Scheißen. Praktiker, 5, 182-188.
5. (2007) Hybrid Welding: An alternative to SAW. Welding J., 10, 42-45.
6. Shchitsyn, Yu.D., Tytkin, Yu.M. (1986) Consumable electrode plasma welding of aluminium alloys. Svarochn. Proizvodstvo, 5, 1-2 [in Russian].
7. Shchitsyn, Yu.D., Shchitsyn, V.Yu., Herold, H. et al. (2003) Plasma welding of aluminium alloys. Ibid., 5, 36-42 [in Russian].
8. Bai, Yan, Gao, Hong-Ming, Qiu, Ling (2010) Droplet transition for plasma-MIG welding on aluminium alloys. Trans. Nonferrous Met. Soc. China, 20, 2234-2239. https://doi.org/10.1016/S1003-6326(10)60634-6
9. Tiago Vieira da Cunha, Jair Carlos Dutra (2007) Processo Plasma-MIG - Contribuição do Arco Plasma na Capacidade de Fusão do Arame. Soldagem Insp. São Paulo, 12, 2, 89-96.
10. Grinyuk, A.A., Korzhik, V.N., Shevchenko, V.E. et al. (2016) Hybrid technologies of welding aluminium alloys based on consumable electrode arc and constricted arc. The Paton Welding J., 5-6, 98-103. https://doi.org/10.15407/tpwj2016.06.17
11. Hee-Keun, Lee, Kwang-San, Chun, Sang-Hyeon, Park, Chung-Yun, Kang (2015) Control of surface defects on plasmaMIG hybrid welds in cryogenic aluminum alloys. Int. J. Nav. Archit. Ocean Eng, 7, 770-783. https://doi.org/10.1515/ijnaoe-2015-0054
12. Sydorets, V., Korzhyk, V., Khaskin, V. et al. (2017) On the Thermal and Electrical Characteristics of the Hybrid Plas ma-MIG Welding Process. Materials Science Forum, ISSN: 1662-9752, 906, 63-71. https://doi.org/10.4028/www.scientific.net/MSF.906.63
13. Goldak, J.A., Akhlaghi, M. (2005) Computational welding mechanics. O., USA.
14. Bofang, Zhu. (2018) The Finite Element Method: Fundamentals and Applications in Civil, Hydraulic, Mechanical and Aeronautical Engineering - John Wiley & Sons Singapore Pte. Ltd. https://doi.org/10.1002/9781119107323
15. Khaskin, V.Yu., Korzhyk, V.M., Peleshenko, S.Y., Wu, Boyi (2015) Evaporation of alloying elements in the material to be welded using laser radiation. First Independent Scientific J., 3, 108-114.
16. Wang, J., Nishimura, H., Katayama, S., Mizutani, M. (2011) Evaporation phenomena of magnesium from droplet at welding wire tip in pulsed MIG arc welding of aluminium alloys. Sci. Technol. Weld. Join., 16, 418-425. https://doi.org/10.1179/1362171810Y.0000000030
17. Lobanov, L.M., Pivtorak, V.A., Savitsky, V.V., Tkachuk, G.I. (2006) Procedure for determination of residual stresses in welded joints and structural elements using electron speckleinterferometry. The Paton Welding J., 1, 24-29.
18. Korzhik, V.N., Pashchin, N.A., Mikhoduj, O.L. et al. (2017) Comparative evaluation of methods of arc and hybrid plasmaarc welding of aluminum alloy 1561 using consumable electrode. Ibid, 4, 32-37. https://doi.org/10.15407/as2017.04.06
19. Korzhyk, V.N., Kvasnytskyi, V.V., Khaskin, V.Yu. (2017) Influence of rigid restraint on formation of residual stressstrain state of plate butt joints from 1561 alloy in MIG, PAW and hybrid PAW-MIG welding. American Scientific J., 17, 1, 14-29.

Suggested Citation

O.A. Babych, V.M. Korzhyk, А.А. Grynyuk, V.Yu. Khaskin, Chunlin Dong and Shanguo Han (2020) Hybrid welding of aluminium 1561 and 5083 ALLOYS USING Plasma-arc and consumable electrode arc (plasma-MIG). The Paton Welding J., 07, 11-22.