Avtomaticheskaya Svarka (Automatic Welding), #10, 2019, pp. 47-53
Peculiarities of hybrid laser-arc welding of stainless steel
Turyk E., Banasik M., Stano S., Urbanchik M.
The use of hy Lukasevich Research Network — Institute of Welding, 16-18 Bl. Czeslava str., Gliwice, 44-100, Poland
Gibrid laser-arc welding laser + MAG for joining elements of large structures of stainless steel is a relatively new problem. The paper discusses the issues of technology of hybrid welding of austenitic steel X2CrNil8-9 and austenitic-ferritic steel X2CrNiMoN21-5-1 using a disc laser of 12 kW capacity. The technological conditions of hybrid welding with a full penetration of butt joints of steel with a thickness of 8, 12 and 20 mm, as well as T-joints with a butt weld with a partial penetration were determined. The typical defects in welds of high alloy stainless steels, produced by hybrid welding, were indicated. 5 Ref., 20 Fig.
Keywords: hybrid welding, laser + arc, active gas, stainless steels, arc and beam parameters, location of sources, typical welding defects
Published: 02.10.2019
Received: 27.06.2019
References
1. Atabaki Mazar, M., Ma, J., Yang, G., Kovacevic, R. (2014) Hybrid laser/arc welding of advanced high strength steel in different butt joint configurations. Materials and Design, 64, December, 573-587.
https://doi.org/10.1016/j.matdes.2014.08.0112. Brian, M. Victor (2011) Hybrid laser arc welding. Edison Welding Institute, ASM Handbook, 6A, Welding Fundamentals and Processes, 321-328
https://doi.org/10.31399/asm.hb.v06a.a00056003. Krivtsun, I.V., Krikent, I.V., Demchenko, V.F. et al. (2015) Interaction of CO2-laser radiation beam with electric arc plasma in hybrid (laser + TIG) welding. The Paton Welding Journal, 3-4, 6-15.
https://doi.org/10.15407/tpwj2015.04.014. Lembeck, H. (2010) Laser hybrid welding of thick sheet metals with disk lasers in shipbuilding industry. Int. Laser Technology Congress AKL.
5. Turichin, G., Velichko, O., Kuznetsov, A. et al. (2014) Mobile hybrid system for pipeline welding on the base of 20 kW fiber laser. In: Proc. of 8th Int. Conf. on Photonic Technologies LANE, 1-4.
https://doi.org/10.1109/LO.2014.6886481