"Avtomatychne Zvaryuvannya" (Automatic Welding), #2, 2024, pp. 7-11
Magnetic pulse treatment of welded joints in the process of fusion welding
L.M. Lobanov1, M.О. Pashchyn1, O.L. Mikhodui1, A.N. Timoshenko1, K.V. Shyian1, О.М. Karlov2, I.P. Kondratenko2, R.S. Kryshchuk2, V.V. Chopyk2
1E.O. Paton Electric Welding Institute of the NAS of Ukraine
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine.
E-mail: olha.mikhodui@gmail.com
2Institute of Electrodynamics of the NAS of Ukraine. 56 Beresteiskyi Ave., 03057, Kyiv, Ukraine.
E-mail: ied1@ied.org.ua
Treatment with a pulsed electromagnetic field (TPEMF) of welded joints leads to a decrease of residual welding stress level.
TPEMF in the welding process contributes to an increase in the efficiency of the welding process (compared to PEMF after
welding) and the simplicity of its technical implementation. On the basis of mathematical modelling and experimental studies
of magnetic pulse processes, an automated complex for TIG welding has been developed that is compatible with TPEMF of the
weld metal under the conditions of a thermal deformation welding cycle. 37 Ref., 6 Fig.
Keywords: pulsed electromagnetic field, welded joints, residual welding stresses, TIG welding, structure dispersion, mathematical
modelling, aluminium alloy
Received: 08.01.2025
Received in revised form: 28.02.2025
Accepted: 10.04.2025
References
1. Lobanov, L.M., Pashchin, N.A., Cherkashin, A.V., Mikhoduj,
O.L., Kondratenko, I.P. (2012) Efficiency of electrodynamic
treatment of aluminium alloy AMg6 and its welded joints.
The Paton Welding J., 1, 2–6.
2. Lobanov, L.M., Pashchin, N.A., Mihodui, O.L. (2014) Repair
of the AMg6 aluminum alloy welded structure by the
electric processing method. Weld. Res. Appl., 1, 55–62.
3. Lobanov, L.M., Pashchin, N.A., Yashchuk, V.A., Mikhodui,
O.L. (2015) Effect of electrodynamic treatment on the fracture
resistance of the AMg6 aluminum alloy under cyclic
loading. Strength of Materials, 47, 447–453. DOI: https://doi.org/10.1007/s11223-015-9676-5
4. Lobanov, L.M., Pashchin, N.A., Timoshenko, A.N. et al.
(2017) Effect of the electrodynamic treatment on the life of
AMg6 aluminum alloy weld joints. Strength of Materials, 49,
234–238. DOI: http://dx.doi.org/10.1007/s11223-017-9862-8
5. Korzhik, V.N., Pashchin, N.A., Mikhodui, O.L. (2017)
Comparative evaluation of methods of arc and hybrid plasma-
arc welding of aluminum alloy 1561 using consumable
electrode. The Paton Welding J., 4, 30–34. DOI: https://doi.org/10.15407/tpwj2017.04.06
6. Batygin, Y.V., Lavinsky, V.I., Khimenko, L.T. (2003) Pulsed
magnetic fields for advanced technologies. Ed. by Yu.V.
Batygin. Kharkov, MOST-Tornado [in Russian].
7. Andrea, D., Burleta, T., Körkemeyerb, F. et al. (2019) Investigation
of the electroplastic effect using nanoindentation.
Materials & Design, 183, 108153. DOI: https://doi.org/10.1016/j.matdes.2019.108153
8. Nayanathara Hendeniya, Gayan Aravinda Abeygunawardena,
Indika De. Silva, Shiranga Wickramasinghe (2020) The
tensile electroplasticity of low carbon steel with low
amplitude pulse current. In: 2020 Moratuwa Engineering
Research Conf. (MERCon), 165–169. DOI: https://doi.org/10.1109/MERCon50084.2020.9185238
9. Turenko, A.N., Batygin, Y.V., Gnatov, A.V. (2009) Pulsed
magnetic fields for advanced technologies. Vol.3: Theory
and experiment of attraction of thin-walled metals by pulsed
magnetic fields. Monography. Kharkiv, KHNADU [in Russian].
10. Batygin, Y.V., Lavinskyi, V.I., Khavin, V.L. (2009) Method of
magnetic pulsed processing of thin-walled metal billets. Pat.
UA 74909, 15.02.2006 [in Ukrainian].
11. Lobanov, L.M., Pashchyn, M.O., Mikhodui, O.L. et al. (2022)
Stress-strain state of welded joints of AMg6 alloy after electrodynamic
treatment during welding. Strength of Materials, 54(6),
983–996. DOI: https://doi.org/10.1007/s11223-023-00474-y
12. Lobanov, L.М., Pashchyn, M.O., Mikhodui, O.L. (2021) Pulsed
electromagnetic field effect on residual stresses and strains of welded
joints of AMg6 aluminum alloy. Strength of Materials, 53(6),
834–841. DOI: https://doi.org/10.1007/s11223-022-00350-1
13. Vasetsky Y.M., Dzyuba K.K. (2017) Analytical method of
calculation of quasi-stationary three-dimensional electromagnetic
current field flowing along a contour of arbitrary
configuration near an electrically conductive body. Tekhnichna
Elektrodynamika, 5, 7–17 [in Russian]. DOI: https://doi.org/10.15407/techned2017.05.007
14. Lobanov, L.M., Pivtorak, V.A., Savitsky, V.V., Tkachuk, G.I.
(2006) Procedure for determination of residual stresses in
welded joints and structural elements using electron speckle-
interferometry. The Paton Welding J., 1, 24–29.
15. Lobanov, L.M., Pashchin, N.A., Mikhodui, O.L. (2012) Influence
of the loading conditions on the deformation resistance
of AMg6 alloy during electrodynamic treatment. Strength
of Materials, 44(5), 472–479. DOI: https://doi.org/10.1007/s11223-012-9401-6
16. Lobanov, L.M., Pashchin, N.A., Cherkashin, A.V. et al. (2012)
Repair welding of intermediate cases of aircraft engines from
high-temperature magnesium alloy ML10 with application of
electrodynamic treatment. The Paton Welding J., 11, 28–33.
17. Belyi, I.V., Fertik, S.M., Khimenko, L.T. (1977) Handbook
on magnetic pulse treatment of metals. Kharkiv, Vyshcha
Shkola [in Russian].
18. Batygin, Yu.V., Chaplygin, E.A. (2006) Eddy currents in flat
sheet metal blanks. Elektrotekhnika i Elektromekhanika, 5,
54–59 [in Russian].
19. Strizhalo, V.A., Novogrudsky, L.S., Vorobiev, E.V. (2008)
Strength of materials at cryogenic temperatures with regard to
the influence of electromagnetic fields. Kyiv, IPP [in Russian].
20. Rashchepkin, A.P., Kondratenko, I.P., Karlov, O.M., Kryshchuk,
R.S. (2019) Electromagnetic field of an inductor with
a W-shaped core for magnetic pulse treatment of materials.
Tekhnichna Elektrodynamika, 6, 5–12 [in Ukrainian]. DOI:
https://doi.org/10.15407/techned2019.06.005
Advertising in this issue: