Eng
Ukr
Rus
Print
2025 №02 (07) 2025 №02 (02)

Automatic Welding 2025 #02
"Avtomatychne Zvaryuvannya" (Automatic Welding), #2, 2024, pp. 7-11

Magnetic pulse treatment of welded joints in the process of fusion welding

L.M. Lobanov1, M.О. Pashchyn1, O.L. Mikhodui1, A.N. Timoshenko1, K.V. Shyian1, О.М. Karlov2, I.P. Kondratenko2, R.S. Kryshchuk2, V.V. Chopyk2

1E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: olha.mikhodui@gmail.com
2Institute of Electrodynamics of the NAS of Ukraine. 56 Beresteiskyi Ave., 03057, Kyiv, Ukraine. E-mail: ied1@ied.org.ua

Treatment with a pulsed electromagnetic field (TPEMF) of welded joints leads to a decrease of residual welding stress level. TPEMF in the welding process contributes to an increase in the efficiency of the welding process (compared to PEMF after welding) and the simplicity of its technical implementation. On the basis of mathematical modelling and experimental studies of magnetic pulse processes, an automated complex for TIG welding has been developed that is compatible with TPEMF of the weld metal under the conditions of a thermal deformation welding cycle. 37 Ref., 6 Fig.
Keywords: pulsed electromagnetic field, welded joints, residual welding stresses, TIG welding, structure dispersion, mathematical modelling, aluminium alloy


Received: 08.01.2025
Received in revised form: 28.02.2025
Accepted: 10.04.2025

References

1. Lobanov, L.M., Pashchin, N.A., Cherkashin, A.V., Mikhoduj, O.L., Kondratenko, I.P. (2012) Efficiency of electrodynamic treatment of aluminium alloy AMg6 and its welded joints. The Paton Welding J., 1, 2–6.
2. Lobanov, L.M., Pashchin, N.A., Mihodui, O.L. (2014) Repair of the AMg6 aluminum alloy welded structure by the electric processing method. Weld. Res. Appl., 1, 55–62.
3. Lobanov, L.M., Pashchin, N.A., Yashchuk, V.A., Mikhodui, O.L. (2015) Effect of electrodynamic treatment on the fracture resistance of the AMg6 aluminum alloy under cyclic loading. Strength of Materials, 47, 447–453. DOI: https://doi.org/10.1007/s11223-015-9676-5
4. Lobanov, L.M., Pashchin, N.A., Timoshenko, A.N. et al. (2017) Effect of the electrodynamic treatment on the life of AMg6 aluminum alloy weld joints. Strength of Materials, 49, 234–238. DOI: http://dx.doi.org/10.1007/s11223-017-9862-8
5. Korzhik, V.N., Pashchin, N.A., Mikhodui, O.L. (2017) Comparative evaluation of methods of arc and hybrid plasma- arc welding of aluminum alloy 1561 using consumable electrode. The Paton Welding J., 4, 30–34. DOI: https://doi.org/10.15407/tpwj2017.04.06
6. Batygin, Y.V., Lavinsky, V.I., Khimenko, L.T. (2003) Pulsed magnetic fields for advanced technologies. Ed. by Yu.V. Batygin. Kharkov, MOST-Tornado [in Russian].
7. Andrea, D., Burleta, T., Körkemeyerb, F. et al. (2019) Investigation of the electroplastic effect using nanoindentation. Materials & Design, 183, 108153. DOI: https://doi.org/10.1016/j.matdes.2019.108153
8. Nayanathara Hendeniya, Gayan Aravinda Abeygunawardena, Indika De. Silva, Shiranga Wickramasinghe (2020) The tensile electroplasticity of low carbon steel with low amplitude pulse current. In: 2020 Moratuwa Engineering Research Conf. (MERCon), 165–169. DOI: https://doi.org/10.1109/MERCon50084.2020.9185238
9. Turenko, A.N., Batygin, Y.V., Gnatov, A.V. (2009) Pulsed magnetic fields for advanced technologies. Vol.3: Theory and experiment of attraction of thin-walled metals by pulsed magnetic fields. Monography. Kharkiv, KHNADU [in Russian].
10. Batygin, Y.V., Lavinskyi, V.I., Khavin, V.L. (2009) Method of magnetic pulsed processing of thin-walled metal billets. Pat. UA 74909, 15.02.2006 [in Ukrainian].
11. Lobanov, L.M., Pashchyn, M.O., Mikhodui, O.L. et al. (2022) Stress-strain state of welded joints of AMg6 alloy after electrodynamic treatment during welding. Strength of Materials, 54(6), 983–996. DOI: https://doi.org/10.1007/s11223-023-00474-y
12. Lobanov, L.М., Pashchyn, M.O., Mikhodui, O.L. (2021) Pulsed electromagnetic field effect on residual stresses and strains of welded joints of AMg6 aluminum alloy. Strength of Materials, 53(6), 834–841. DOI: https://doi.org/10.1007/s11223-022-00350-1
13. Vasetsky Y.M., Dzyuba K.K. (2017) Analytical method of calculation of quasi-stationary three-dimensional electromagnetic current field flowing along a contour of arbitrary configuration near an electrically conductive body. Tekhnichna Elektrodynamika, 5, 7–17 [in Russian]. DOI: https://doi.org/10.15407/techned2017.05.007
14. Lobanov, L.M., Pivtorak, V.A., Savitsky, V.V., Tkachuk, G.I. (2006) Procedure for determination of residual stresses in welded joints and structural elements using electron speckle- interferometry. The Paton Welding J., 1, 24–29.
15. Lobanov, L.M., Pashchin, N.A., Mikhodui, O.L. (2012) Influence of the loading conditions on the deformation resistance of AMg6 alloy during electrodynamic treatment. Strength of Materials, 44(5), 472–479. DOI: https://doi.org/10.1007/s11223-012-9401-6
16. Lobanov, L.M., Pashchin, N.A., Cherkashin, A.V. et al. (2012) Repair welding of intermediate cases of aircraft engines from high-temperature magnesium alloy ML10 with application of electrodynamic treatment. The Paton Welding J., 11, 28–33.
17. Belyi, I.V., Fertik, S.M., Khimenko, L.T. (1977) Handbook on magnetic pulse treatment of metals. Kharkiv, Vyshcha Shkola [in Russian].
18. Batygin, Yu.V., Chaplygin, E.A. (2006) Eddy currents in flat sheet metal blanks. Elektrotekhnika i Elektromekhanika, 5, 54–59 [in Russian].
19. Strizhalo, V.A., Novogrudsky, L.S., Vorobiev, E.V. (2008) Strength of materials at cryogenic temperatures with regard to the influence of electromagnetic fields. Kyiv, IPP [in Russian].
20. Rashchepkin, A.P., Kondratenko, I.P., Karlov, O.M., Kryshchuk, R.S. (2019) Electromagnetic field of an inductor with a W-shaped core for magnetic pulse treatment of materials. Tekhnichna Elektrodynamika, 6, 5–12 [in Ukrainian]. DOI: https://doi.org/10.15407/techned2019.06.005

Advertising in this issue: