2019 №06 (05) DOI of Article
2019 №06 (07)

Automatic Welding 2019 #06
Avtomaticheskaya Svarka (Automatic Welding), #6, 2019, pp.39-43

Filler flux-cored wire for TIG welding and surfacing of titanium alloy VT22

S.V. Akhonin, S.L. Shvab
E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazimir Malevich Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

The paper considers an approach for selection of filler material in TIG welding of titanium alloy VT22. It is shown that weld metal obtained using pilot flux-cored wire PPT-22 is a representative of transient class of titanium alloys, to which VT22 alloy is referred to (coefficient of β-stabilizing of such metal equals 1). This wire can be used for argon-arc welding of high-strength titanium alloys VT22. Mechanical properties of such welded joints after heat treatment reach the level of base metal indices. Application of PPT-22 wire in restoration argon-arc surfacing of VT22 alloy parts provides their high service characteristics. 15 Ref., 4 Tabl., 5 Fig.
Keywords: titanium alloy VT22, flux-cored wire, TIG welding, restoration surfacing

Received: 18.04.2019
Published: 20.05.2019


1. Moiseev, V.N. (2001) Machine-building: Encyclopedia. Vol. II-3: Nonferrous metals and alloys. Ed. by I.N. Fridlyander. Chapter 2: Titanium and titanium alloys [in Russian].
2. Belov, S.P., Brun, M.Ya., Glazunov, S.G. (1992) Metallurgy of titanium and its alloys. Ed. by S.G. Glazunov, B.A. Kolachev. Moscow, Metallurgiya [in Russian].
3. Iliin, A.A., Kolachev, B.A., Polkin, I.S. (2009) Titanium alloys. Composition, structure, properties. Moscow, VILS MATI [in Russian].
4. Chechulin, B.B., Ushkov, S.S., Razuvaeva, I.N., Goldfajn, V.N. (1977) Titanium alloys in machine-building. Leningrad, Mashinostroenie [in Russian].
5. Kolachev, B.A., Polkin, I.S., Talalaev, V.D. (2000) Titanium alloys of different countries. Moscow, VILS [in Russian].
6. Kolachev, B.A., Elagin, V.I., Livanov, V.A. (2005) Metallurgy and heat treatment of nonferrous metals and alloys. Moscow, MISIS [in Russian].
7. Borisova, E.A., Bochvar, G.A., Brun, M.Ya. (1980) Metallography of titanium alloys. Moscow, Metallurgiya [in Russian].
8. Khorev, A.I., Belov, S.P., Glazunov, S.G. (1992) Metallurgy of titanium and its alloys. Moscow, Metallurgiya [in Russian].
9. Prilutsky, V.P., Shvab, S.L., Akhonin, S.V. et al. (2014) Comparative properties of filler materials for surfacing on titanium alloy VT22. In: Proc. of Int. Conf. on Titanium 2014 in CIS (Russia, Nizhny Novgorod, May 2014), 109-114.
10. Prilutsky, V.P., Zamkov, V.M., Radkevich, I.A., Nikiforov, G.A. (1998) Filler material based on titanium alloy. Ukraine, Pat. 25333. Int. Cl. A B23K 35/36 [in Ukrainian].
11. Prilutsky, V.P., Zamkov, V.N., Gurevich, S.M. (1975) Argonarc welding of titanium alloys with application of filler fluxcored wire. Avtomatich. Svarka, 7, 41-44 [in Russian].
12. Prilutsky, V.P., Akhonin, S.V., Schwab, S.L., Petrychenko, I.K. (2018) Effect of heat treatment on the structure and properties of titanium alloy VT22 welded joints produced by TIG-welding with flux-cored wire. Mat. Sci. Forum, 927, 119-125. https://doi.org/10.4028/www.scientific.net/MSF.927.119
13. Prilutsky, V.P., Akhonin, S.V., Schwab, S.L. et al. (2017) Restoration surfacing of parts of titanium alloy VT22. The Paton Welding J., 1, 32-35. https://doi.org/10.15407/tpwj2017.01.05
14. Antonyuk, S.L., Abolikhina, E.V., Barannikov, A.M. et al. (2010) Fatigue characteristics of titanium alloy VT22 with argon-arc surfacing and subsequent high-speed heat treatment. In: Proc. of Int. Conf. on Titanium-2010 in CIS (Russia, Ekaterinburg, May 2010), 206-211.
15. Ivasishin, O.M., Markovsky, P.E., Molyar, A.G., Antonyuk S.L (2009) Application of local induction heat treatment for repair of products from VT22 alloy. In: Proc. of Int. Conf. on Titanium-2009 in CIS (Ukraine, Odessa, May 2009), 413-421.