Avtomaticheskaya Svarka (Automatic Welding), #1, 2023, pp. 38-46
Methods to prevent the stress shielding effect in implant-body system (Review)
A.V. Moltasov1, S.G. Voinaroych1, M.M. Dyman1, S.M. Kalyuzhnyi1, S.V. Burburska2
1E.O. Paton Electric Welding Institute of the NAS of Ukraine.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2OSTEONIKA Limited Liability Company. 98 Striiska Str., 79026, Lviv, Ukraine. E-mail: ito3dlab@gmail.com
Statistical data of many national registers and medical societies show that aseptic instability of the hip joint prosthesis is one of
the main obstacles in the path to application of orthopedic implants. One of the causes for aseptic instability is manifestation
of stress shielding effect, which is due to mismatch of the moduli of elasticity of the implant and bone tissue. Methods are
considered, which allow lowering the modulus of elasticity of the metal implant, bringing it closer to the respective modulus
of elasticity of bone tissue. It is found that reaching the posed goal by replacement of the traditional metals, which are used for
implant manufacture, by alloys with much lower modulus of elasticity, is a task, which has not been solved technologically in
their mass production. The currently most common methods of lowering the modulus of elasticity of orthopedic implants were
analyzed, and their advantages and short-comings are indicated. The most serious problem in mass application of advanced
additive technologies in implant manufacture is their labour- and material consumption. It is found that application of surface
modification technologies, in particular plasma methods of porous coating deposition is the most affordable and effective method
of lowering the modulus of elasticity of the implant surface, contacting the bone, with a high probability of reduction of the
stress shielding effect manifestation. 53 Ref., 8 Fig.
Keywords: orthopedic implant, titanium alloys, modulus of elasticity, porous coatings, surface modification
Received: 29.11.2022
References
1. Malnick, S.D.H., Knobler, H. (2006) The medical complications of obesity. QJM: An International Journal of Medicine, 9 (99), 565-579.
https://doi.org/10.1093/qjmed/hcl0852. Musumeci, G., Aiello, F.C., Szychlinska, M.A. et al. (2015) Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression. International Journal of Molecular Sciences, 3 (16), 6093-6112.
https://doi.org/10.3390/ijms160360933. Johnson, V.L., Hunter, D.J. (2014) The epidemiology of osteoarthritis. Best Practice & Research Clinical Rheumatology, 1 (28), 5-15.
https://doi.org/10.1016/j.berh.2014.01.0044. Zethraeus, N., Borgström, F., Ström, O. et al. (2007) Cost-effectiveness of the treatment and prevention of osteoporosis: A review of the literature and a reference model. Osteoporosis International, 1 (18), 9-23.
https://doi.org/10.1007/s00198-006-0257-05. Barrère, F., Mahmood, T.A., de Groot, K., van Blitterswijk, C.A. (2008) Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions. Materials Science and Engineering R: Reports, 1-6 (59), 38-71.
https://doi.org/10.1016/j.mser.2007.12.0016. Kosyakov, A.N., Grebennikov, K.A., Miloserdov, A.V. et al. (2019) 3D-planning and prototyping at complex primary endoprosthetics of hip joint. Travma, 5 (20), 53-61 [in Russian].
https://doi.org/10.22141/1608-1706.5.20.2019.1855577. Quinn, J., McFadden, R., Chan, C.-W., Carson, L. (2020) Titanium for orthopedic applications: an overview of surface modification to improve biocompatibility and prevent bacterial biofilm formation. Science, 11 (23), Article number 101745.
https://doi.org/10.1016/j.isci.2020.1017458. Evans, J.T., Evans, J.P., Walker, R.W. et al. (2019) How long does a hip replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. The Lancet, 10172 (393), 647-654.
https://doi.org/10.1016/S0140-6736(18)31665-99. Kuibida V., Kokhanets P. and Lopatynska V. (2021) Mechanism of strengthening the skeleton using plyometrics. Journal of Physical Education and Sport, 3 (21), 1309-1316.
https://doi.org/10.7752/jpes.2021.0316610. Arabnejad, S., Johnston, B., Tanzer, M., Pasini, D. (2017) Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. Journal of Orthopaedic Research, 8 (35), 1774-1783.
https://doi.org/10.1002/jor.2344511. Zhang, B., Pei, X., Zhou, C. et al. (2018) The biomimetic design and 3D printing of customized mechanical properties porous Ti6Al4V scaffold for load-bearing bone reconstruction. Materials and Design, 152, 30-39.
https://doi.org/10.1016/j.matdes.2018.04.06512. Attarilar, Sh., Djavanroodi, F., Irfan, O.M. et al. (2020) Strain uniformity footprint on mechanical performance and erosion-corrosion behavior of equal channel angular pressed pure titanium. Results in Physics, 17, Article number 103141.
https://doi.org/10.1016/j.rinp.2020.10314113. Apostu, D., Lucaciu, O., Lucaciu, G.D.O. et al. (2017) Systemic drugs that influence titanium implant osseointegration. Drug Metabolism Reviews, 1 (49), 92-104.
https://doi.org/10.1080/03602532.2016.127773714. Arzamasov, B.N., Brostrem, V.A., Bushe, N.A. et al. (1990) Structural materials. Ed. by B.N. Arzamasov. Moscow, Mashinostroenie [in Russian].
15. Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K. (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants: A review. Progress in Materials Science, 3 (54), 397-425.
https://doi.org/10.1016/j.pmatsci.2008.06.00416. Niinomi, M., Nakai, M., Hieda, J. (2012) Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 11 (8), 3888-3903.
https://doi.org/10.1016/j.actbio.2012.06.03717. Lubov Donaghy C., McFadden R., Kelaini S. et al. (2020) Creating an antibacterial surface on beta TNZT alloys for hip implant applications by laser nitriding. Optics and Laser Technology, 121, Article number 105793.
https://doi.org/10.1016/j.optlastec.2019.10579318. Liu, J., Chang, L., Liu, H. et al. (2017) Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb-Ti-Ta alloys as biomedical material. Materials Science and Engineering C: Materials for Biological Applications, 71, 512-519.
https://doi.org/10.1016/j.msec.2016.10.04319. Wen, C.E., Mabuchi, M., Yamada, Y. et al. (2001) Processing of biocompatible porous Ti and Mg. Scripta Materialia, 10 (45), 1147-1153.
https://doi.org/10.1016/S1359-6462(01)01132-020. Mahmoud, D., Elbestawi, M.A. (2017) Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: A review. Journal of Manufacturing and Materials Processing 1, 2 (13), Article number jmmp1020013.
https://doi.org/10.3390/jmmp102001321. Kane, R., Ma, P.X. (2013) Mimicking the nanostructure of bone matrix to regenerate bone. Materials Today, 11 (16), 418-423.
https://doi.org/10.1016/j.mattod.2013.11.00122. Pałka, K., Pokrowiecki, R. (2018) Porous titanium implants: A review. Advanced Engineering Materials, 5 (20), Article number 1700648.
https://doi.org/10.1002/adem.20170064823. Schneider, E., Kinast, C., Eulenberger, J. et al. (1989) A comparitive study of the initial stability of cementless hip prostheses. Clinical Orthopaedics and Related Research, 248, 200-209.
https://doi.org/10.1097/00003086-198911000-0003224. Yuan, L., Ding, S., Wen, C. (2019) Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioactive Materials, 1(4), 56-70.
https://doi.org/10.1016/j.bioactmat.2018.12.00325. Kosyakov, A.N., Grebennikov, K.A., Miloserdov, A.V. et al. (2019) Applications of trabecular components during endoprosthetics of hip joint (Review). Visnyk Ortopedii, Travmatologii ta Protezuvanniya, 4 (103), 116-123 [in Russian].
https://doi.org/10.37647/0132-2486-2019-103-4-110-11726. Bikas, H., Stavropoulos, P., Chryssolouris, G. (2016) Additive manufacturing methods and modeling approaches: A critical review. International Journal of Advanced Manufacturing Technology, 1-4 (83), 389-405.
https://doi.org/10.1007/s00170-015-7576-227. Chashmi, M.J., Fathi, A., Shirzad, M. et al. (2020) Design and analysis of porous functionally graded femoral prostheses with improved stress shielding. Designs, 2(4), 1-15, Article number 12.
https://doi.org/10.3390/designs402001228. Kosyakov, A.N., Grebennikov, K.A., Miloserdov, A.V. et al. (2018) Compensation of bone defects of cotyloid cavity using the additive technologies. Visnyk Ortopedii, Travmatologii ta Protezuvanniya, 4 (99), 64-74 [in Russian]. DOI: https://doi.org/10.37647/0132-2486-2018-99-4-64-74
29. Shi, H., Zhou, P., Li, J. et al. (2021) Functional gradient metallic biomaterials: techniques, current scenery, and future prospects in the biomedical field. Frontiers in Bioengineering and Biotechnology, 8, Article number 616845.
https://doi.org/10.3389/fbioe.2020.61684530. Goodall, R. (2013) Advances in Powder Metallurgy. Elsevier.
31. Minko, D., Belyavin, K. (2016) A porous materials production with an electric discharge sintering. International Journal of Refractory Metals and Hard Materials, 59, 67-77.
https://doi.org/10.1016/j.ijrmhm.2016.05.01532. Sakamoto, Y., Asaoka, K., Kon, M. et al. (2006) Chemical surface modification of high-strength porous Ti compacts by spark plasma sintering. Bio-Medical Materials and Engineering, 2 (16), 83-91. PubMed ID: https://pubmed.ncbi. nlm.nih.gov/16477117
33. Jia, J., Siddiq, A.R., Kennedy, A.R. (2015) Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: Characterization and mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 48, 229-240
https://doi.org/10.1016/j.jmbbm.2015.04.01834. Itin, V.I., Ponter, V.É., Khodorenko, V.N. et al. (1997) Strength properties of porous permeable stomatological materials based on titanium. Powder Metallurgy and Metal Ceramics, 9-10 (36), 479-482.
https://doi.org/10.1007/BF0268049635. Helsen, J.A., Breme, H.J. (1998) Metals as biomaterial. Chichester, John Wiley & Sons Ltd.
36. Smetkin, A.A., Konyukhova, S.G., Yarmonov, A.N. (2003) Application of porous permeable materials in dental implant technique. Izvestiya Vysshikh Uchebnykh Zavedenij. Tsvetnaya Metallurgiya, 5, 65-67.
37. Kon, M., Hirakata, L.M., Asaoka, K. (2004) Porous Ti-6Al-4V alloy fabricated by spark plasma sintering for biomimetic surface modification. Journal of Biomedical Materials Research - Part B: Applied Biomaterials, 1 (68), 88-93.
https://doi.org/10.1002/jbm.b.2000438. Nomura, N., Oh, I.-H., Hanada, S. et al. (2005) Effect of nitrogen on mechanical properties of porous titanium compacts prepared by powder sintering. Materials Science Forum, III (475-479), 2313-2316.
https://doi.org/10.4028/0-87849-960-1.231339. Torres, Y., Pavón, J.J., Nieto, I., Rodríguez, J.A. (2011) Conventional powder metallurgy process and characterization of porous titanium for biomedical applications. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 4 (42), 891-900.
https://doi.org/10.1007/s11663-011-9521-640. Weng, F., Chen, C.Z., Yu, H.J. (2014) Research status of laser cladding on titanium and its alloys: A review. Materials and Design, 58, 412-425.
https://doi.org/10.1016/j.matdes.2014.01.07741. Mohseni, E., Zalnezhad, E., Bushroa, A.R. (2014) Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: A review paper. International Journal of Adhesion and Adhesives, 48, 238-257.
https://doi.org/10.1016/j.ijadhadh.2013.09.03042. Christie, M.J. (2002) Clinical applications of trabecular metal. American Journal of Orthopedics (Belle Mead, N.J.), 4(31), 219-220. PubMed ID: https://pubmed.ncbi.nlm.nih. gov/12008854
43. Levine, B.R., Sporer, S., Poggie R.A. et al. (2006) Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials, 27 (27), 4671-4681.
https://doi.org/10.1016/j.biomaterials.2006.04.04144. Darwich, A., Nazha, H., Daoud, M. (2020) Effect of coating materials on the fatigue behavior of hip implants: A three-dimensional finite element analysis. Journal of Applied and Computational Mechanics, 2, 284-295. DOI: https://doi.org/10.22055/JACM.2019.30017.1659
45. Jemat, A., Ghazali, M.J., Razali, M., Otsuka, Y. (2015) Surface modifications and their effects on titanium dental implants. BioMed Research International, Article number 791725.
https://doi.org/10.1155/2015/79172546. Sun, L. (2018) Thermal spray coatings on orthopedic devices: When and how the FDA reviews your coatings. Journal of Thermal Spray Technology, 8(27), 1280-1290.
https://doi.org/10.1007/s11666-018-0759-247. Alontseva, D., Voinarovych,, S., Ghassemieh, E. et al. (2020) Manufacturing and characterisation of robot assisted microplasma multilayer coating of titanium implants: Biocompatible coatings for medical implants with improved density and crystallinity. Johnson Matthey Technology Review, 2 (64), 180-191.
https://doi.org/10.1595/205651320X1573728326828448. Cizek, J., Matejicek, J. (2018) Medicine meets thermal spray technology: A review of patents. Journal of Thermal Spray Technology, 8(27), 1251-1279.
https://doi.org/10.1007/s11666-018-0798-849. Lyasnikov, V.N., Lepilin, A.V., Protasova, N.V. (2013) Scientific fundamentals of development of dental implants. Saratovskii Nauchno-Meditsinskii Zhurnal, 3(9), 431-434 [in Russian].
50. Borisov, Yu.S., Kislitsa, A.N., Vojnarovich, S.G. (2006) Peculiarities of the process of microplasma wire spraying. The Paton Welding J., 4, 21-25.
51. Voinarovych, S.G., Alontseva, D.L., Kyslytsia, O.M. et al. (2022) Microplasma spraying of coatings using zirconium wire. Ibid, 9, 41-46.
https://doi.org/10.37434/tpwj2022.09.0752. Gaiko, G.V., Panchenko, L.M., Pidgaetskyi, V.M. et al. (2008) Influence of different types of coatings for cementless endoprosthesis on clonogenic activity of stem stromal cells of bone marrow in patients with hip osteoarthrosis in vitro (Experimental investigation). Visnyk Ortopedii, Travmatologii ta Protezuvanniya, 4(59), 5-11 [in Ukrainian]. DOI: https://doi.org/10.37647/0132-2486-2018-59-4-5-11
53. Moltasov, A., Dyman, M., Kaliuzhnyi, S. et al. (2022) Dependence of the elasticity modulus of microplasma coatings made of titanium grade VT1-00 and zirconium grade KTC-110 on their porosity. Series on Biomechanics, 2(36), 142-153.
https://doi.org/10.7546/SB.36.2022.02.14
Advertising in this issue: