Eng
Ukr
Rus
Print

2023 №08 (08) DOI of Article
10.37434/as2023.08.01
2023 №08 (02)

Automatic Welding 2023 #08
Avtomaticheskaya Svarka (Automatic Welding), #8, 2023, pp. 3-8

Influence of weld pool surface depression on burning conditions of an arc with a refractory cathode

I.V. Krivtsun, I.V. Krikent, V.F. Demchenko

E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

Results of mathematical modeling of an argon arc with refractory cathode in case of a deformed surface of the weld pool (arc anode) are described. It is assumed that there is a depression (crater) on the anode surface, the shape and size of which are preset; arc plasma has axial symmetry, and it is in a stationary state; metal evaporation from the anode surface is ignored. A mathematical model of the processes of energy, momentum, mass and charge transfer in the arc column and anode region is briefly described. A numerical study was conducted of thermal, electromagnetic and gas-dynamic processes in the arc column with a curved surface of the anode, as well as conditions of electric, thermal and force interaction of the arc with the anode surface, depending on the crater depth. Results of computational experiments are illustrated by the fields of isotherms, isobars and current lines in an arc with a curved surface of the anode, which are compared with similar fields in the case of an anode with a plane surface. A procedure for calculation of normal components of the vectors of electric current density and specific heat flux into the anode with a curved surface is described, and results of calculation of radial distributions of these characteristics, depending on the depth of the crater on the anode surface, are given. These results are complemented by numerical studies of the influence of the crater depth on arc pressure distribution over the anode surface. A conclusion was made that sagging of the weld pool surface in TIG welding can significantly change the conditions of electric and thermal interaction of the arc with the metal being welded, namely it can influence the thermal and hydrodynamic processes in the liquid metal, which determine the penetrability of the arc with the refractory cathode. 29 Ref., 8 Fig.
Keywords: TIG welding, arc column, anode region, weld pool surface, anode, electric current density, specific heat flux into the anode, mathematical modeling


Received: 24.06.2023

References

1. Nestor, O.H. (1962) Heat intensity and current density distributions at the anode of high current, inert gas arcs. J. Appl. Phys., 33(5), 1638-1648. https://doi.org/10.1063/1.1728803
2. Dinulescu, H.A., Pfender, E. (1980) Analysis of the anode boundary layer of high intensity arcs. J. Appl. Phys., 51(6), 3149-3157. https://doi.org/10.1063/1.328063
3. Hsu, K.C., Etemadi, K., Pfender, E. (1983) Study of the free-burning high-intensity argon arc. J. Appl. Phys., 54(3), 1293-1301. https://doi.org/10.1063/1.332195
4. Hsu, K.C., Pfender, E. (1983) Two-temperature modeling of the free-burning high-intensity arc. J. Appl. Phys., 54(8), 4359-4366. https://doi.org/10.1063/1.332672
5. Sanders, N.A., Pfender, E. (1984) Measurement of anode falls and anode heat transfer in atmospheric pressure high intensity arcs. J. Appl. Phys., 55(3), 714-722. https://doi.org/10.1063/1.333129
6. Tsai, N.S., Eagar, T.W. (1985) Distribution of the heat and current fluxes in gas tungsten arcs. Metall. Trans. B, 16, 841- 846. https://doi.org/10.1007/BF02667521
7. Schmidt, H.P., Speckhofer, G. (1996) Experimental and theoretical investigation of high-pressure arcs: Part I. The cylindrical arc column (two-dimensional modelling). IEEE Trans. Plasma Sci., 24(4), 1229-1238. https://doi.org/10.1109/27.536570
8. Jenista, J., Heberlein, J.V.R. Pfender, E. (1997) Numerical model of the anode region of high-current electric arcs. IEEE Trans. Plasma Sci., 25(5), 883-890. https://doi.org/10.1109/27.649585
9. Goodarzi, M., Choo, R., Toguri, J.M. (1997) The effect of the cathode tip angle on the GTAW arc and weld pool: I. Mathematical model of the arc. J. Phys. D: Appl. Phys., 30, 2744-2756. https://doi.org/10.1088/0022-3727/30/19/013
10. Füssel, U., Schnick, M., Munoz, J.E.F., Zschеtsche, J., Siewert, E. (2007) Experimentelle möglichkeiten der WSG-lichtbogenanalyse. Schweiβen und Schneiden, 59(7-8), 396-403.
11. Krivtsun, I., Demchenko, V., Lesnoi, A., Krikent, I., Mokrov, O., Reisgen, U., Zabirov, A., Pavlyk, V. (2009) Model of heat, mass- and charge-transfer in welding arc column and anode region. Proc. of the 9th Int. Seminar «Numerical Analysis of Weldability», Graz-Seggau, Austria, 2009.
12. Krivtsun, I.V., Demchenko, V.F., Krikent, I.V. (2010) Model of the processes of heat-, mass- and charge transfer in the anode region and column of the welding arc with refractory cathode. The Paton Welding J., 6, 2-9.
13. Krivtsun, I.V., Demchenko, V.F., Krikent, I.V. (2010) Model of the processes of heat-, mass- and charge transfer in the anode region and column of the welding arc with refractory cathode. The Paton Welding J., 6, 2-9.
14. Semenov, I.L., Krivtsun, I.V., Reisgen, U. (2016) Numerical study of the anode boundary layer in atmospheric pressure arc discharges. J. Phys. D: Appl. Phys., 49, 105204 (12 pp). https://doi.org/10.1088/0022-3727/49/10/105204
15. Lago, F., Gonzalez, J.J., Freton, P., Gleizes, A. (2004) A numerical modelling of an electric arc and its interaction with the anode: Part I. The two-dimensional model. J. Phys. D: Appl. Phys., 37, 883-897. https://doi.org/10.1088/0022-3727/37/6/013
16. Yamamoto, K., Tanaka, M., Tashiro, S., Nakata, K., Yamazaki, K., Yamamoto, E., Suzuki, K., Murphy, A.B. (2008) Metal vapour behaviour in gas tungsten arc thermal plasma during welding. Sci. Technol. of Weld. Joining, 13(6), 566-572. https://doi.org/10.1179/174329308X319235
17. Murphy, A.B., Tanaka, M., Yamamoto, K., Tashiro, S., Sato, T., Lowke, J.J. (2009) Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour. J. Phys. D: Appl. Phys., 42, 194006 (20 pp). https://doi.org/10.1088/0022-3727/42/19/194006
18. Murphy, A.B. (2010) The effect of metal vapour in arc welding. J. Phys. D: Appl. Phys., 43, 434001 (31 pp). https://doi.org/10.1088/0022-3727/43/43/434001
19. Mougenot, J., Gonzalez, J.J., Freton, P., Masquere, M. (2013) Plasma-weld pool interaction in tungsten inert-gas configuration. J. Phys. D: Appl. Phys., 46, 135206 (14 pp). https://doi.org/10.1088/0022-3727/46/13/135206
20. Krikent, I.V., Krivtsun, I.V., Demchenko, V.F. (2014) Simulation of electric arc with refractory cathode and evaporating anode. The Paton Welding J., 9, 17-24. https://doi.org/10.15407/tpwj2014.09.02
21. Krivtsun, I.V., Demchenko, V.F., Krikent, I.V. et al. (2019) Effect of current and arc length on characteristics of arc discharge in nonconsumable electrode welding. The Paton Welding J., 5, 2-12. https://doi.org/10.15407/tpwj2019.05.01
22. Jian, X., Wu, C.S. (2015) Numerical analysis of the coupled arc-weld pool-keyhole behaviors in stationary plasma welding. Int. J. Heat Mass Transfer., 84, 839-847. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.069
23. Wang, X., Luo, Y., Fan, D. (2019) Investigation of heat and fluid flow in high current GTA welding by a unified model. Int. J. Therm. Sci., 142, 20-29. https://doi.org/10.1016/j.ijthermalsci.2019.04.005
24. Li, Y., Su, Ch., Wang, L., Wu Ch. (2020) A convenient unified model to display the mobile keyhole-mode arc welding process. Appl. Sci., 10, 7955 (17 pp). https://doi.org/10.3390/app10227955
25. Lowke, J.J., Tanaka, M. (2006) «LTE-diffusion approximation» for arc calculations. J. Phys. D: Appl. Phys., 39, 3634-3643. https://doi.org/10.1088/0022-3727/39/16/017
26. Demchenko, V., Lesnoi, A. (2000) Lagrange-Euler method of numerical solutions of multidimensional problems of convective diffusion. Reports of the National Academy of Sciences of Ukraine, 11, 71-75 [in Russian].
27. Cressault, Y., Murphy, A.B., Teulet, Ph. et al. (2013) Thermal plasma properties for Ar-Cu, Ar-Fe and Ar-Al mixtures used in welding plasma processes: II. Transport coefficients at atmospheric pressure. J. Phys. D: Appl. Phys., 46, 415207 (27 pp). https://doi.org/10.1088/0022-3727/46/41/415207
28. Essoltani, A., Proulx, P., Boulos, M.I. et al. (1994) Volumetric emission of argon plasmas in the presence of vapours of Fe, Si and Al. Plasma Chem. and Plasma Proc., 14(4), 437-450. https://doi.org/10.1007/BF01570206
29. Demchenko, V.F., Krivtsun, I.V., Krikent, I.V., Shuba, I.V. (2017) Force interaction of arc current with self-magnetic field. The Paton Welding J., 3, 15-24. https://doi.org/10.15407/tpwj2017.03.03

Advertising in this issue: