Eng
Ukr
Rus
Print

2023 №12 (03) DOI of Article
10.37434/as2023.12.04
2023 №12 (05)

Automatic Welding 2023 #12
"Avtomatychne Zvaryuvannya" (Automatic Welding), #12, 2023, pp. 24-33

Hybrid laser-plasma welding: efficiency and new posibilities (Review)

V.M. Korzhyk1, V.Yu. Khaskin1, E.V. Illyashenko1, S.I. Peleshenko3, A.A. Grynyuk1, O.A. Babych2, A.O. Alyoshin2, O.M. Voitenko1

1E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2«Foreign Trade Office of China-Ukraine E.O.Paton Institute of Welding» Ltd. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine.
3NTUU “Igor Sikorsky Kyiv Polytechnic Institute”. 37 Prospect Beresteisky, Kyiv, 03056, Ukraine.

Research papers devoted to development of laser-plasma processes during the last two decades are reviewed. It was found that the current directions of scientific research of the processes of laser-plasma welding are focused mainly on studying the peculiarities of joint impact of constricted arc plasma and laser radiation with wave length of 1.03 – 1.07 μm (first of all, fiber laser) on steels and alloys, as well as studying the physical fundamentals of manifestation of the synergic (hybrid) effect at such an impact and determination of the possibilities of its practical application. It was determined, in particular, that increase of the effectiveness of synergic effect manifestation is related to improvement of the plasma arc burning conditions in the zone of ionized vapour plume, which forms under the impact of focused laser radiation, as well as simplification of laser keyhole formation due to plasma arc pressure. Ref. 49, Fig. 9.
Keywords: laser-plasma welding, synergic effect, process efficiency, steels, aluminium alloys, industrial application


Received: 06.09.2023

References

1. Steen, W.M., Eboo, M. (1979) Arc augmented laser welding. Metal Construction, 11(7), 332-335.
2. Gvozdetsky, V. S., Krivtsun, I. V., Chizhenko, M. I. et. al. (1995) Laser-arc discharge: Theory and application. Welding and Surfacing Rev. 3, Harwood.
3. Krivtsun, I.V., Chizhenko, M.I. (1997) Principles of calculation of laser-arc plasmatrons. Avtomatich. Svarka, 1, 16-23 [in Russian].
4. Dykhno, I.S., Krivtsun, I.V., Ignatchenko, G.N. (1997) Combined Laser and Plasma Arc Welding Torch. Patent US5700989.
5. Quintino, L., Costa, A., Miranda, R. et al. (2007) Welding with high power fiber lasers - A preliminary study. Materials & Design, 28(4), 1231-1237. https://doi.org/10.1016/j.matdes.2006.01.009
6. Krivtsun, I.V. (2001) Model of evaporation of metal in arc, laser and laser-arc welding. The Paton Welding J., 3, 2-9.
7. Krivtsun, I.V. (2001) Peculiarities of penetration of metal in laserarc welding using YAG-laser. The Paton Welding J., 12, 29-32.
8. Zhiyong, L., Srivatsan, T.S., Yan, L. et. al. (2013) Coupling of Laser with Plasma Arc to Facilitate Hybrid Welding of Metallic Materials: A Review. J. of Materials Engineering and Performance, 22(2), 384-395. https://doi.org/10.1007/s11665-012-0280-6
9. Shikai, Wu, Rongshi, Xiao. (2015) Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium. Optics & Laser Technology, 67, 169-175. https://doi.org/10.1016/j.optlastec.2014.10.018
10. Hu, B., den Ouden, G. (2005) Synergetic effects of hybrid laser/arc welding. Science and Technology of Welding and Joining, 10(4), 427-431. https://doi.org/10.1179/174329305X44170
11. Zhang, C., Gao, M., Zeng, X. (2019) Influences of synergy effect between laser and arc on laser-arc hybrid welding of aluminum alloys. Optics & Laser Technology, 120, 105766. https://doi.org/10.1016/j.optlastec.2019.105766
12. Mahrle, A., Schnick, M., Rose, S. et. al. (2011) Process characteristics of fibre-laser assisted plasma arc welding. Phys. D: Appl. Phys. 44, 345502. https://doi.org/10.1088/0022-3727/44/34/345502
13. Hipp, D., Mahrle, A., Jäckel, S. et. al. (2018) Füssel U. Method for high accuracy measurements of energy coupling and melting efficiency under welding conditions. J. of Laser Applications, 30, 032414. https://doi.org/10.2351/1.5040615
14. Hipp, D., Mahrle, A., Beyer, E. et. al. (2019) Thermal Efficiency Analysis for Laser-Assisted Plasma Arc Welding of AISI 304 Stainless Steel. Materials, 12, 1460. https://doi.org/10.3390/ma12091460
15. Korzhyk, V.M., Khaskin, V.Yu., Grynyuk, A.A. et al. (2021) Features of laser-plasma welding of corrosion-resistant steel AISI 304 with laser application. The Paton Welding J., 12, 9-17. https://doi.org/10.37434/as2021.12.02
16. Meng, Y., Gao, M., Zeng, X. (2018) Effects of arc types on the laser-arc synergic effects of hybrid welding. Optics Express, 26(11), 14775-14785. https://doi.org/10.1364/OE.26.014775
17. Emmelmann, C., Kirchhoff, M., Petri, N. (2011) Development of Plasma-Laser-Hybrid Welding Process. Physics Procedia, 12, 194-200. https://doi.org/10.1016/j.phpro.2011.03.025
18. Walduck, R.P. (1999) Enhanced Laser Beam Welding. Patent US5866870.
19. Dykhno, I., Ignatchenko, G., Bogachenkov, Е. (2002) Combined Laser and Plasma-Arc Processing Torch and Method. Patent US6388227.
20. Kim, C.H., Ahn. Y.H., Kim, J.H. (2011) CO2 Laser-Micro Plasma Arc Hybrid Welding for Galvanized Steel Sheets. Transactions of Nonferrous Metals Society of China, 21(1), 47-53. https://doi.org/10.1016/S1003-6326(11)61059-5
21. Stelling, K., Lammers, M., Schobbert, H. et al. (2006) Qualification of Nd:YAG and CO2 Laser Plasma Hybrid Welding with Filler Material Powder. Welding and Cutting, 5(6), 330-334.
22. Stelling, K., Schobbert, H., Kannengiesser, Th. et. al. (2005) Vertical-up and -down laser plasma powder hybrid welding of a high nitrogen austenitic stainless steel. Welding in the World, 49(5/6), 45-49. https://doi.org/10.1007/BF03263409
23. Rose, S., Mahrle, A., Schnick, M. et. al. (2013) Plasma welding with a superimposed coaxial fiber laser beam. Welding in the World, 57(6), 857-865. https://doi.org/10.1007/s40194-013-0079-6
24. Beyer, E., Standfuss, J. (2012) Innovations in laser welding using high brightness lasers. Heriot-Watt IMRC Conference, 26th June 2012, Edinburgh.
25. Mahrle, A., Rose, S., Schnick, M. et. al. (2013) Laser-assisted plasma arc welding of stainless steel. J. of Laser Applications, 25, 032006. https://doi.org/10.2351/1.4798338
26. Mahrle, A., Rose, S., Schnick, M. et. al. (2013) Stabilisation of plasma welding arcs by low power laser beams. Science and Technology of Welding and Joining, 18(4), 323-328. https://doi.org/10.1179/1362171813Y.0000000109
27. Turichin, G., Lopota, V., Valdaitseva, E. et. al. (2007) Peculiarity of phase transformation kinetics and control of material microstructure formation during laser hybrid welding. In: Laser Technologies in Welding and Materials Processing. Kiev: E.O. Paton Electric Welding Institute, NASU, 126-130.
28. Swanson, P.T., Page, C.J., Read, E. et. al. (2007) Plasma augmented laser welding of 6 mm steel plate. Science and Technology of Welding and Joining, 12(2), 153-160. https://doi.org/10.1179/174329307X164283
29. Fanrong Kong, Haiou Zhang, Guilan Wang. (2009) Modeling of Thermal-metallurgical Behavior during Hybrid Plasma-laser Deposition Manufacturing. Progress in Electromagnetics Research Symposium. Beijing, China, March 23-27, 946-953.
30. Turichin, G.A., Tsybulsky, I.A., Zemlyakov, E.V. et al. (2009) On monitoring system of laser-arc welding. Metalloobrabotka, 6, 46-48 [in Russian].
31. Sidorets, V.N., Bushma, A.I., Khaskin, V.Yu. (2012) Prospectives of application of hybrid laser-plasma welding of stainless steels in machine-building. Visnyk DDMA, 3(28), 244-246 [in Russian].
32. Krivtsun, I.V., Bushma, A.I., Khaskin, V.Yu. (2013) Hybrid laser-plasma welding of stainless steels. The Paton Welding J., 3, 48-50.
33. Korzhyk, V., Khaskin, V., Grynyuk, A. (2022) Comparison of the features of the formation of joints of aluminum alloy 7075 (Al-Zn-Mg-Cu) by laser, microplasma, and laser- microplasma welding. Eastern-European J. of Enterprise Technologies, 1/12(115), 38-47. https://doi.org/10.15587/1729-4061.2022.253378
34. Krivtsun, I.V., Shelyagin, V.D., Khaskin, V.Yu. (2007) Hybrid laser-plasma welding of aluminium alloys. The Paton Welding J., 5, 36-40.
35. Markashova, L.I., Shelyagin, V.D., Kushnaryova, O.S. et al. (2015) Effect of technological parameters of laser and laserplasma alloying on properties of 38KhN3MFA steel layers. The Paton Welding J., 5-6, 124-129. https://doi.org/10.15407/tpwj2015.06.28
36. Repkin, D.A., Melyukov, V.V., Gusakov, A.K. et al. (2013) Determination of action mode by concentrated energy flows on material using inverse problem method. Vestnik Nizhegorodskogo Un-ta, 2(2), 88-91 [in Russian].
37. Bagaev, S.N., Grachev, G.N., Smirnov, A.L. et al. (2014) Application of laser-plasma method of surface modification of metals for improving of tribotechnical characteristics of internal combustion engine cylinders. Obrabotka Metallov, 1(62), 14-22 [in Russian].
38. Borisov, Yu.S., Demchenko, V.F., Lesnoj, A.B. et al. (2013) Numerical modeling of heat transfer and hydrodynamics in laser-plasma treatment of metallic materials. The Paton Welding J., 4, 2-7.
39. Peleshenko, S.I., Khaskin, V.Yu., Korzhyk, V.M. et al. (2022) Features of welding high-strength alloys based on aluminium and beryllium using highly-concentrated heat sources (Review). The Paton Welding J., 12, 9-18. https://doi.org/10.37434/tpwj2022.12.02
40. Svenungsson, J., Choquet, I., Kaplan, A. (2015) Laser Welding Process - A Review of Keyhole Welding Modelling. Physics Procedia, 78, 182-191. https://doi.org/10.1016/j.phpro.2015.11.042
41. Shishov, A.Yu., Tretyakov, R.S., Tretyakov, E.S. (2012) Prospects of development of laser-plasma welding technology for large thick products in shipbuilding using powder filler material. Inzhenernyj Zhurnal: Nauka i Innovatsii, 6, 146- 152. https://doi.org/10.18698/2308-6033-2012-6-237
42. Page, C. J., Devermann, T., Biffin, J. et. al. (2002) Plasma augmented laser welding and its applications. Science and Technology of Welding and Joining. 7(1), 10-15. https://doi.org/10.1179/136217102225001313
43. Yoon, S.H., Hwang, J.R., Na, S.J. (2007) A study on the plasma-augmented laser welding for small-diameter STS tubes. Int. J. Adv. Manuf. Technol., 32, 1134-1143. https://doi.org/10.1007/s00170-006-0436-3
44. Lasertechnik aktuell (2007) Bremer Institut für angewandte Strahltechnik Bulletin, 2.
45. Möller, F. (2016) Wechselwirkung zwischen Lichtbogen und Laserstrahl bei Aluminium. Strahltechnik, Bd. 59, Bremen: BIAS Verlag.
46. Peleshenko, S., Kvasnytskyi, V., Khaskin, V. et. al. (2022) Features of physical and metallurgical processes during welding of thin-walled aluminum alloy structures using laser radiation. Danish Scientific J., 65, 50-59. DOI: https://doi.org/10.5281/zenodo.7271299
47. Bernatskyi, A., Khaskin, V. (2021) The history of the creation of lasers and analysis of the impact of their application in the material processing on the development of certain industries. History of Science and Technology. 11(1), 125-149. https://doi.org/10.32703/2415-7422-2021-11-1-125-149
48. Shelyagin, V.D., Krivtsun, I.V., Borisov, Yu.S. (2005) Laserarc and laser-plasma welding and coating technologies. The Paton Welding J., 8, 44-49.
49. Korzhyk, V., Bushma, O., Khaskin, et. al. (2017) Analysis of the Current State of the Processes of Hybrid Laser-Plasma Welding. In: Proceedings of the Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017). Advances in Engineering Research (AER), 102, 80-90. https://doi.org/10.2991/icmmse-17.2017.14

Advertising in this issue: