Eng
Ukr
Rus
Print

2024 №05 (06) DOI of Article
10.37434/as2024.05.07
2024 №05 (08)

Automatic Welding 2024 #05
"Avtomatychne Zvaryuvannya" (Automatic Welding), #5, 2024, pp. 55-59

Diffusion welding of magnesium alloy MA2-1 through the intermediate layer of titanium or nickel

Iu.V. Falchenko, L.V. Petrushynets, V.E. Fedorchuk, V.A. Kostin, O.L. Puzrin

E.O. Paton Electric Welding Institute of the NASU. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

Vacuum diffusion welding of magnesium alloy MA2-1 is considered in the paper. It was found that welding of the magnesium alloy without using intermediate layers does not ensure formation of high-quality joints. Separate flat pores, elongated along the joint line, are observed in the joint, causing low mechanical properties of the joints. Using intermediate layers made of low-alloy nickel or titanium alloys and forming matrices during welding, which increase plastic deformation on the contact surfaces of the samples during the thermal-deformation welding cycle, allows producing joints without defects. Metallographic studies show significant plastic deformation of the intermediate layer (Ni or Ti), which is a harder material compared to the magnesium alloy. The mechanical properties and microhardness of the welded joints were determined. 13 Ref., 2 Tabl., 4 Fig.
Keywords: vacuum diffusion welding, magnesium alloy, intermediate layer, microstructure, mechanical testing


Received: 16.07.2024
Received in revised form: 03.09.2024
Accepted: 14.10.2024

References

1. Gialanella, S., Malandruccolo, A. (2020) Aerospace Alloys. Springer, Cham. https://doi.org/10.1007/978-3-030-24440-8
2. Min, D., Shen, J., Lai, S., Chen, J. (2009) Effect of heat input on the microstructure and mechanical properties of tungsten inert gas arc butt-welded AZ61 magnesium alloy plates. Mater. Charact., 60(12), 1583-1590. https://doi.org/10.1016/j.matchar.2009.09.010
3. Abbas, M., Khan, A., Ali, M. et al. (2014) Effect of weld current and weld speed on the microstructure and tensile properties of magnesium alloy specimens during tungsten inert gas. Technical J., University of Engineering and Technology Taxila, 19(II), 35-39.
4. Lingxiao, Ouyang, Yunwei, Gui, Quanan, Li, Yunqiang, Fan (2021) Isothermal compression bonding mechanism and mechanical properties of WE43 magnesium-rare earth alloy. Mater. Sci. and Engin.: A. 822(3), 141664. https://doi.org/10.1016/j.msea.2021.141664
5. Fei Lin, YaXin Tian, Zhitong Chen et al. (2015) Diffusion bonding and post-weld heat treatment of extruded AZ91 magnesium alloys. Metals, Alloys, Coatings, 21(4). https://doi.org/10.5755/j01.ms.21.4.9699
6. Sun, D.Q., Gu, X.Y., Liu, W.H. (2005) Transient liquid phase bonding of magnesium alloy (Mg-3Al-1Zn) using aluminium interlayer. Mater. Sci. and Engin.: A. 391(1-2), 29-33. https://doi.org/10.1016/j.msea.2004.06.008
7. Ghavami, R., Halvaee, A., Hadian, A. (2019) Effect of bonding temperature on interface properties of AZ31 magnesium alloys joined by transient liquid phase using silver interlayer. Materials Research Express, 6, 116519, 1-9. https://doi.org/10.1088/2053-1591/ab44df
8. Abdulaziz Nasser AlHazaa, Muhammad Ali Shar, Anas Mahmoud, Hiroshi Nishikawa (2018) Transient liquid phase bonding of magnesium alloy AZ31 using Cu coatings and Cu coatings with Sn interlayers. Metals, 8(1), 60. https://doi.org/10.3390/met8010060
9. AlHazaa, A.N., Khalil Abdelrazek Khalil, Muhammad A. Shar (2016) Transient liquid phase bonding of magnesium alloys AZ31 using nickel coatings and high frequency induction heat sintering. J. of King Saud University - Science, 28, 152-159. https://doi.org/10.1016/j.jksus.2015.09.006
10. Zhang, Weixiang, Du, Shuangmin (2013) Investigation into Cu-interlayered diffusion bonding trial of AZ31B alloy. Advanced Materials Research, 631-632, 167-171. https://doi.org/10.4028/www.scientific.net/AMR.631-632.167
11. Falchenko, Yu.V., Petrushynets, L.V., Fedorchuk, V.Ie. et al. (2023) Diffusion welding of magnesium alloy MA2-1 through a zinc interlayer. The Paton Welding J., 9, 38-42. https://doi.org/10.37434/tpwj2023.09.06
12. Falchenko, Yu.V., Muravejnik, A.N., Kharchenko, G.K., Fedorchuk, V.E., Gordan, G.N. (2010) Pressure welding of micro- dispersed composite material AMg5 + 27 % Al2O3 with application of rapidly solidified interlayer of eutectic alloy Al + 33 % Cu. The Paton Welding J., 2, 7-10.
13. Murray, J.L. (1986) The Mg−Ti (Magnesium−Titanium) system. Bulletin of Alloy Phase Diagrams, 7, 245-248. https://doi.org/10.1007/BF02868999

Advertising in this issue: